COGNITIVE SCIENCE

Director of undergraduate studies: Joshua Knobe, 102 C, 432-1699, joshua.knobe@yale.edu ; www.yale.edu/cogsci

FACULTY ASSOCIATED WITH THE PROGRAM IN COGNITIVE SCIENCE

Professors Woo-kyoung Ahn (Psychology), Stephen Anderson (Linguistics), Amy Arnsten (School of Medicine), John Bargh (Psychology), Paul Bloom (Chair) (Psychology), Hal Blumenfeld (School of Medicine), Marvin Chun (Psychology), Michael Della Rocca (Philosophy), Ravi Dhar (School of Management), Julie Dorsey (Computer Science), Carol Fowler (Adjunct) (Psychology), Robert Frank (Linguistics), David Gelernter (Computer Science), Tamar Gendler (Philosophy), Laurence Horn (Emeritus) (Linguistics), Marcia Johnson (Psychology), Dan Kahan (Law School), Frank Keil (Psychology, Linguistics), Joshua Knobe (Philosophy), Daeyeol Lee (School of Medicine), Gregory McCarthy (Psychology), Drew McDermott (Computer Science), Nathan Novemsky (School of Management, Psychology), Rhea Paul (School of Medicine), Kevin Pelphrey (School of Medicine), Kenneth Pugh (School of Medicine), Ian Quinn (Music), Holly Rushmeier (Computer Science), Laurie Santos (Psychology), Brian Scassellati (Computer Science, Mechanical Engineering), Brian Scholl (Psychology), Sun-Joo Shin (Philosophy), Zoltán Szabó (Philosophy), Fred Volkmar (School of Medicine), Xiao-Jing Wang (School of Medicine), David Watts (Anthropology), Bruce Wexler (School of Medicine), Karen Wynn (Psychology), Raffaella Zanuttini (Linguistics), Steven Zucker (Computer Science, Biomedical Engineering)

Associate Professors Daylian Cain (School of Management), James Mazer (School of Medicine), Maria Piñango (Linguistics)

Assistant Professors Yarrow Dunham (Psychology), Hedy Kober (School of Medicine), George Newman (School of Management), David Rand (Psychology), Gregory Samanez-Larkin (Psychology)

Cognitive science explores the nature of cognitive processes such as perception, reasoning, memory, attention, language, decision making, imagery, motor control, and problem solving. The goal of cognitive science, stated simply, is to understand how the mind works. Cognitive science is an inherently interdisciplinary endeavor, drawing on tools and ideas from fields such as psychology, computer science, linguistics, philosophy, economics, and neuroscience. Approaches include empirical studies of the ontogenetic and phylogenetic development of cognitive abilities, experimental work on cognitive processing in adults, attempts to understand perception and cognition based on patterns of breakdown in pathology, computational and robotic research that strives to simulate aspects of cognition and behavior, neuroscientific investigations of the neural bases of cognition using neural recording and brain scanning, and the development of philosophical theories of the nature of mind.

Introductory course An introductory survey course, CGSC 110, is normally taken by the end of the fall term of the sophomore year and prior to admission to the major.

Requirements of the major Fourteen term courses, for a total of thirteen course credits, are required for the major, including the introductory course and the senior requirement. Each major program must include the elements described below. The particular selection of courses must be approved by the director of undergraduate studies in order to assure overall coherence. No course may be used to fulfill more than one requirement for the major.

Breadth requirement A breadth requirement introduces students to the subfields of cognitive science. Each major is required to take a course from four of the following six areas:

1. Computer science: CPSC 201
2. Economics and decision making: ECON 159, PSYC 553
4. Neuroscience: CGSC 201, MCDB 320, PSYC 160, 270
5. Philosophy: PHIL 126, 181, 269, 270, 271
6. Psychology: PSYC 110, 140, 304

Depth requirement Students fulfill a depth requirement by completing six courses that focus on a specific topic or area in cognitive science. The depth courses must be chosen from at least two disciplines, and are typically drawn from the six cognitive science subfields. It may be possible to draw depth courses from other fields when necessary to explore the student’s focal topic, in consultation with the director of undergraduate studies. All six depth courses must be at the intermediate or advanced level; for most disciplines, courses numbered 300 or above fulfill the requirement. With permission of the director of undergraduate studies, up to two directed reading or research courses may count toward the depth requirement.

Skills requirement Because formal techniques are fundamental to cognitive science, one skills course is required, preferably prior to the senior year. Courses that fulfill the skills requirement for the B.A. include CPSC 112, 202, LING 224, PSYC 200, and 270. Other courses may fulfill this requirement with permission of the director of undergraduate studies. The skills requirement for the B.S. is fulfilled by PSYC 200 or an equivalent course in statistics.
Junior colloquium In the junior year, students are required to take CGSC 395, a half-credit colloquium in which majors discuss current issues and research in cognitive science and select a senior essay topic.

Senior requirement In the senior year, students take CGSC 491, a half-credit capstone course in which the senior essay is written. Students in the course meet regularly with one another and with the faculty to discuss current work in cognitive science and their own developing research projects.

B.S. degree The B.S. degree is typically awarded to students who conduct empirical research as part of their senior requirement. This normally includes designing an experiment and collecting and analyzing data.

B.A. degree The B.A. degree is typically awarded to students who conduct a nonempirical senior essay. There are no restrictions on the research format for the B.A.

Credit/D/Fail Courses taken Credit/D/Fail may not be counted toward the requirements of the major, except with permission of the director of undergraduate studies.

Application to the major Students may apply to enter the major at any point after the freshman year. Applications must be made in writing to the director of undergraduate studies. Applications must include (a) an official or unofficial transcript of work at Yale, (b) a brief statement of purpose, which indicates academic interests and expected focus within the areas of the Cognitive Science major, and (c) a list of the six upper-level courses that the student plans to take as part of the research focus. Application forms and answers to frequently asked questions are available on the program’s Web site (http://www.yale.edu/cogsci/info_undergrad.html).

REQUIREMENTS OF THE MAJOR

Prerequisite CGSC 110

Number of courses 14 term courses, for a total of 13 course credits (incl prereq and senior req)

Specific course required CGSC 395

Distribution of courses 1 course each in 4 of 6 subfields, as specified; 6 courses in a specific topic or area, as specified; 1 skills course, as specified

Senior requirement B.S. – Empirical research and senior essay in CGSC 491; B.A. – Nonempirical senior essay in CGSC 491

Introductory Courses

CGSC 110a / PSYC 130a, Introduction to Cognitive Science April Ruiz
An introduction to the interdisciplinary study of how the mind works. Discussion of tools, theories, and assumptions from psychology, computer science, neuroscience, linguistics, and philosophy. SO

CGSC 135a / HIST 118a / HSHM 216a / PSYC 135a, Minds and Brains in America Henry Cowles
A survey of the science and medicine of mind and brain in America since 1800. Madness and the asylum; phrenology and psychoanalysis; psychology in politics, law, and advertising; the rise of the "neuro- " disciplines; mental health in public life. Texts from fields such as neurology, physiology, psychology, psychiatry, and philosophy. May not be taken after HSHM 409. HU

CGSC 216b / LING 116b, Cognitive Science of Language Claire Moore-Cantwell
The study of language from the perspective of cognitive science. Exploration of mental structures that underlie the human ability to learn and process language, drawing on studies of normal and atypical language development and processing, brain imaging, neuropsychology, and computational modeling. Innate linguistic structure vs. determination by experience and culture; the relation between linguistic and nonlinguistic cognition in the domains of decision making, social cognition, and musical cognition; the degree to which language shapes perceptions of color, number, space, and gender. SO

Advanced Courses

CGSC 304a / PSYC 304a, The Mental Lives of Babies and Animals Karen Wynn
Interdisciplinary exploration of the cognitive, social, and emotional capacities of creatures lacking language and culture. The extent to which our complex psychology is unique to mature humans; the relative richness of a mental life without language or culture. Some attention to particular human populations such as children with autism and adults with language disorders. SO

* CGSC 313b / PHIL 305b / PSYC 313b, Philosophy for Psychologists Joshua Knobe
Introduction to frameworks developed within philosophy that have applications in psychological research. Principal topics include the self, causation, free will, and morality. Recommended preparation: a course in philosophy or psychology. HU, SO

* CGSC 390a, Junior Seminar in Cognitive Science Mark Sheskin
Discussion of historically important papers in cognitive science. Topics are varied and reflect student interests. Some attention to planning for the senior project. Intended for juniors in the Cognitive Science major.

* CGSC 406b / PSYC 406b, The Evolution of Morality Mark Sheskin
The evolution of moral judgment and behavior. Foundational topics include competing characterizations of moral cognition, inclusive fitness, and literature on cross-cultural universals and differences. Debates include how much of adult morality is early-emerging in
development vs. a late-emerging product that relies heavily on learning, the presence of morality in other species, and the relationship between the evolution of morality and the evolution of religious belief. SO

* CGSC 413b / PSYC 413b, Mind, Brain, and Society Marvin Chun
Recent advances in modern neuroscience as they inform or complicate issues in society. Views from disciplines such as psychology, philosophy, economics, political science, law, and religion. SO

Introduction to the emerging field of moral cognition. Focus on questions about the philosophical significance of psychological findings. Topics include the role of emotion in moral judgment; the significance of character traits in virtue ethics and personality psychology; the reliability of intuitions and the psychological processes that underlie them. HU

Courses for Majors

* CGSC 395b, Junior Colloquium in Cognitive Science Mark Sheskin
Survey of contemporary issues and current research in cognitive science. By the end of the term, students select a research topic for the senior essay. Enrollment limited to Cognitive Science majors. ½ Course cr

* CGSC 471a and CGSC 472b, Directed Research in Cognitive Science Joshua Knobe
Research projects for qualified students. The student must be supervised by a member of the Cognitive Science faculty, who sets the requirements and directs the research. To register, a student must submit a written plan of study to the director of undergraduate studies and the faculty supervisor. The normal minimum requirement is a written report of the completed research, but individual faculty members may set alternative equivalent requirements. Only one term may be offered toward the major, with permission of the director of undergraduate studies; two terms may be offered toward the bachelor’s degree.

* CGSC 473a and CGSC 474b, Directed Reading in Cognitive Science Joshua Knobe
Individual study for qualified students who wish to investigate an area of cognitive science not covered in regular courses. The student must be supervised by a member of the Cognitive Science faculty, who sets the requirements and meets regularly with the student. To register, a student must submit a written plan of study to the director of undergraduate studies and the faculty supervisor. The normal minimum requirement is a term paper, but individual faculty members may set alternative equivalent requirements. Only one term may be offered toward the major, with permission of the director of undergraduate studies; two terms may be offered toward the bachelor’s degree.

* CGSC 491b, Senior Project Mark Sheskin
A research colloquium leading to the completion of the senior essay. Students attend regular colloquium presentations. Enrollment limited to Cognitive Science majors. ½ Course cr

Related Courses That May Count toward the Major

* CHLD 350a or b / PSYC 350a or b, Autism and Related Disorders Staff
Weekly seminar focusing on autism and related disorders of socialization. A series of lectures on topics in etiology, diagnosis and assessment, treatment and advocacy, and social neuroscience methods; topics cover infancy through adulthood. Supervised experience in the form of placement in a school, residence, or treatment setting for individuals with autism spectrum disorders. Details about admission to the course are explained at the first course meeting. Prerequisite: an introductory psychology course. SO

CPSC 112b, Introduction to Programming Yang Yang
Development on the computer of programming skills, problem-solving methods, and selected applications. No previous experience with computers necessary. QR

CPSC 201a or b, Introduction to Computer Science Stephen Slade
Introduction to the concepts, techniques, and applications of computer science. Topics include computer systems (the design of computers and their languages); theoretical foundations of computing (computability, complexity, algorithm design); and artificial intelligence (the organization of knowledge and its representation for efficient search). Examples stress the importance of different problem-solving methods. After CPSC 112 or equivalent. QR
Math: Stat/Applied Math

CPSC 202a, Mathematical Tools for Computer Science Dana Angluin
Introduction to formal methods for reasoning and to mathematical techniques basic to computer science. Topics include propositional logic, discrete mathematics, and linear algebra. Emphasis on applications to computer science: recurrences, sorting, graph traversal, Gaussian elimination. QR

CPSC 470a, Artificial Intelligence Drew McDermott
Introduction to artificial intelligence research, focusing on reasoning and perception. Topics include knowledge representation, predicate calculus, temporal reasoning, vision, robotics, planning, and learning. After CPSC 201 and 202. QR
An introduction to game theory and strategic thinking. Ideas such as dominance, backward induction, Nash equilibrium, evolutionary stability, commitment, credibility, asymmetric information, and signaling are applied to games played in class and to examples drawn from economics, politics, the movies, and elsewhere. After introductory microeconomics. No prior knowledge of game theory assumed. **QR, SO**

LING 110a, Language: Introduction to Linguistics
Jim Wood
The goals and methods of linguistics. Basic concepts in phonology, morphology, syntax, and semantics. Techniques of linguistic analysis and construction of linguistic models. Trends in modern linguistics. The relation of linguistics to psychology, logic, and other disciplines. **SO**

LING 117a / PSYC 137a, Language and Mind
Maria Piñango
Knowledge of language as a component of the mind: mental grammars, the nature and subdivisions of linguistic knowledge in connection with the brain. The logical problem of language acquisition. The "universal grammar hypothesis" according to which all humans have an innate ability to acquire language. The connection between language acquisition and general cognitive abilities. **SO**

LING 130, Evolution of Language

LING 220b / PSYC 318b, General Phonetics
Ryan Bennett
Investigation of possible ways to describe the speech sounds of human languages. Acoustics and physiology of speech; computer synthesis of speech; practical exercises in producing and transcribing sounds. **SO**

LING 224a, Formal Foundations of Linguistic Theories
Robert Frank
Study of formal systems that play an important role in the scientific study of language. Exploration of a range of mathematical structures and techniques; demonstrations of their application in theories of grammatical competence and performance including set theory, graphs and discrete structures, algebras, formal language, and automata theory. Evaluation of strengths and weaknesses of existing formal theories of linguistic knowledge. **QR, SO**

LING 227a / PSYC 327a, Language and Computation I
Staff
Design and analysis of computational models of language. Topics include finite state tools, computational morphology and phonology, grammar and parsing, lexical semantics, and the use of linguistic models in applied problems. Prerequisite: prior programming experience or permission of instructor. **QR, SO**

LING 231b / PSYC 331b, Neurolinguistics
Maria Piñango
The study of language as a cognitive neuroscience. The interaction between linguistic theory and neurological evidence from brain damage, degenerative diseases (e.g., Alzheimer's disease), mental illness (e.g., schizophrenia), neuroimaging, and neurophysiology. The connection of language as a neurocognitive system to other systems such as memory and music. **SO**

LING 232a, Introduction to Phonological Analysis
Ryan Bennett
The structure of sound systems in particular languages. Phonemic and morphophonemic analysis, distinctive-feature theory, formulation of rules, and problems of rule interpretation. Emphasis on problem solving. Prerequisite: LING 220, or a grade of B or above in LING 110. (Formerly LING 132) **SO**

LING 235b, Phonological Theory
Claire Moore-Cantwell
Topics in the architecture of a theory of sound structure. Motivations for replacing a system of ordered rules with a system of ranked constraints. Optimality theory: universals, violability, constraint types and their interactions. Interaction of phonology and morphology, as well as the relationship of phonological theory to language acquisition and learnability. Opacity, lexical phonology, and serial versions of optimality theory. Prerequisite: LING 232 or permission of instructor. **SO, RP**

LING 253a, Syntax I
Raffaella Zanuttini
An introduction to the syntax of natural language. Generative syntactic theory and key theoretical concepts. Syntactic description and argumentation. Topics include the structure of clauses and noun phrases, movement operations, and the notion of parameter. (Formerly LING 153) **SO**

LING 254b, Syntax II
Robert Frank
Recent developments in the principles and parameters approach to syntactic theory. In-depth exploration of theoretical and empirical issues in long-distance dependencies (island effects, dependency types, movement vs. binding), the character of syntactic structure (constituency, thematic mapping, functional categories), and the architecture of grammatical derivations (logical form, operations for structure building, anaphora). Prerequisite: LING 253. **SO**

LING 263a, Semantics I
Ashwini Deo
Introduction to truth-conditional compositional semantics. Set theory, first- and higher-order logic, and the lambda calculus as they relate to the study of natural language meaning. Some attention to analyzing the meanings of tense/aspect markers, adverbs, and modals. **QR, SO**
LING 280b, Morphology Stephen Anderson
The theory of word structure within a formal grammar. Relation to other areas of grammar (syntax, phonology); basic units of word structure; types of morphology (inflection, derivation, compounding). Prerequisites: LING 232 and 253, or permission of instructor.

MCDB 320a, Neurobiology Haig Keshishian and Paul Forscher
The excitability of the nerve cell membrane as a starting point for the study of molecular, cellular, and systems-level mechanisms underlying the generation and control of behavior. After a year of college-level chemistry; a course in physics is strongly recommended.

PHIL 126b, Introduction to Modern Philosophy from Descartes to Kant Kenneth Winkler
An introduction to major figures in the history of modern philosophy, with critical reading of works by Descartes, Malabranche, Spinoza, Leibniz, Locke, Berkeley, Hume, and Kant. Intended to be taken in conjunction with PHIL 125, although PHIL 125 is not a prerequisite.

PHIL 267a, Mathematical Logic Sun-Joo Shin
An introduction to the metatheory of first-order logic, up to and including the completeness theorem for the first-order calculus. Introduction to the basic concepts of set theory. Prerequisite: PHIL 115 or permission of instructor.

PHIL 270a, Epistemology Keith DeRose
Introduction to current topics in the theory of knowledge. The analysis of knowledge, justified belief, rationality, certainty, and evidence.

PSYC 110a or b, Introduction to Psychology Staff
A survey of major psychological approaches to the biological, cognitive, and social bases of behavior.

PSYC 140a, Developmental Psychology Frank Keil
An introduction to research and theory on the development of perception, action, emotion, personality, language, and cognition from a cognitive science perspective. Focus on birth to adolescence in humans and other species. Prerequisite: PSYC 110.

PSYC 150a, Social Psychology John Bargh
Study of social cognition, attitudes and persuasion, group processes, intergroup processes, prosocial behavior, aggression, and conformity. Theories, methodology, and applications of social psychology. Prerequisite: PSYC 110.

PSYC 160a, The Human Brain Gregory McCarthy
Introduction to the neural bases of human psychological function, including social, cognitive, and affective processing. Preparation for more advanced courses in cognitive and social neuroscience. Topics include memory, reward processing, neuroeconomics, individual differences, emotion, social inferences, and clinical disorders. Neuroanatomy, neurophysiology, and neuropharmacology are also introduced.

PSYC 200b, Statistics Gregory Samanez-Larkin
Measures of central tendency, variability, association, and the application of probability concepts in determining the significance of research findings.

* PSYC 270b, Research Methods in Behavioral Neuroscience Nelson Donegan
Laboratory course in which students design and conduct research to study brain function and behavior. Emphasis on hands-on participation in behavioral and neuroscience techniques. Prerequisites: PSYC 160 or 170, and a course in statistics, or with permission of instructor.

* PSYC 479b, Thinking Woo-kyoung Ahn
A survey of psychological studies on thinking and reasoning, with discussion of ways to improve thinking skills. Topics include judgments and decision making, counterfactual reasoning, causal learning, inductive inferences, analogical reasoning, problem solving, critical thinking, and creativity.