Cellular and Molecular Physiology

Sterling Hall of Medicine B147, 203.785.4041
http://medicine.yale.edu/physiology
M.S., M.Phil., Ph.D.

Chair
Michael Caplan

Director of Graduate Studies
David Zenisek (SHM B114, 203.785.6474, david.zenisek@yale.edu)

Professors Peter Aronson (Internal Medicine/Nephrology), Angelique Bordey (Neurosurgery), Thomas Brown (Psychology), Cecilia Canessa, Lloyd Cantley (Internal Medicine/Nephrology), Michael Caplan, Nancy Carrasco, Lawrence Cohen, Marie Egan (Pediatrics), Barbara Ehrlich (Pharmacology), Anne Eichmann (Internal Medicine/Cardiology), Biff Forbush III, John Geibel (Surgery), Leonard Kaczmarek (Pharmacology), George Lister (Pediatrics), Pramod Mistry (Pediatrics), Michael Ntobach, Vincent Pieribone, Patricia Preisig (Internal Medicine/Nephrology), W. Mark Saltzman (Biomedical Engineering), Joseph Santos-Sacchi (Surgery/Otolaryngology), Gerald Shulman (Internal Medicine/Endocrinology), Fred Sigworth, Susumu Tomita, Fred Wright (Internal Medicine/Nephrology), Lawrence Young (Internal Medicine/Cardiology), David Zenisek, Z. Jimmy Zhou (Ophthalmology & Visual Science)

Associate Professors Nii Addy (Psychiatry), Nadia Ameer (Pediatrics), Sviatoslav Bagriantsev, Nigel Bamford (Neurology), Stuart Campbell (Biomedical Engineering), Jonathan Demb (Ophthalmology & Visual Science), Tore Eid (Laboratory Medicine), Elena Gracheva, Shuta Ishibe (Internal Medicine/Nephrology), Erdem Karatekin, Richard Kibbey (Internal Medicine/Endocrinology), Jesse Rinehart, Satinder Singh, Alda Tufro (Pediatrics), Xiaoyong Yang (Comparative Medicine)

Assistant Professors Rui Chang, Jean-Ju Chung, Guillaume de Lartigue, Kristopher Kahle (Neurosurgery), Rachel Perry, Carson Thoreen

FIELDS OF STUDY

Fields of study range from cellular and molecular physiology to integrative medical biology. Areas of current interest include: ion channels, transporters and pumps, membrane biophysics, cellular and systems neurobiology, protein trafficking, epithelial transport, signal transduction pathways, cardiovascular biology, sensory physiology, metabolism, organ physiology, genetic models of human disease, pathophysiology, structural biology of membrane proteins, and physiological genomics.

SPECIAL ADMISSIONS REQUIREMENTS

We welcome applications from students with backgrounds in the biological, chemical, and/or physical sciences. These include majors in biology, biochemistry, physiology, genetics, chemistry, physics, mathematics, engineering, computer science, and psychology. Courses in biology, biochemistry, organic and physical chemistry, and mathematics through calculus are recommended. The GRE General Test is required. To enter the Ph.D. program, students will apply to the Molecular Medicine, Pharmacology, and Physiology track within the interdepartmental graduate program in Biological and Biomedical Sciences (BBS), http://bbs.yale.edu.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE

Formal requirements for the Ph.D. degree include two or three terms of course work, a qualifying examination taken by the end of the second year, submission of a thesis prospectus, two terms of teaching, and completion and satisfactory defense of the thesis.

Students are expected to design a suitable program of courses in consultation with a faculty adviser. The director of graduate studies (DGS) will provide general oversight of the course selections. These courses will provide a coherent background for the expected area of thesis research and also satisfy the department’s subject and proficiency requirements. Students must satisfactorily pass at least six graduate-level courses, including C&M 550, C&M 560, and C&M 650. Also during the first two terms, each student should explore research projects by performing rotations in at least three laboratories to create an informed basis upon which to select a thesis project by the end of the first year. There is no foreign language requirement. The qualifying examination, which must be passed by the end of the student’s fourth term, will cover areas of physiology that complement the student’s major research interest.

An important dimension of graduate training in Cellular and Molecular Physiology is the acquisition of teaching skills through participation in courses appropriate for the student’s academic interests. Ph.D. students are expected to participate in two terms (or the equivalent) of teaching, at a TF level 20. Students are not expected to teach before passing the qualifying examination.

In addition to all other requirements, students must successfully complete C&M 650, The Responsible Conduct of Research, prior to the end of their first year of study; and, in their fourth year of study, all students must successfully complete B&BS 503, RCR Refresher for Senior BBS Students.

After satisfying the departmental predissertation requirements, passing the qualifying examination, submitting a satisfactory thesis prospectus, and presenting a satisfactory report to the appropriate thesis advisory committee, students are admitted to candidacy. The completed dissertation must describe original research making a significant contribution to knowledge.
HONORS REQUIREMENT
Students must meet the Graduate School's Honors requirement by the end of the fourth term of full-time study. Students must also maintain an overall High Pass average. Student progress toward these goals is reviewed at the end of the second term.

SPECIAL REQUIREMENTS FOR M.D./PH.D. STUDENTS
M.D./Ph.D. students must pass at least three graduate-level courses that are not part of the Yale School of Medicine's regular M.D. program, including at least one C&M course, preferably C&M 560.

Courses taken toward the M.D. degree can be counted toward the Graduate School's Honors requirement provided that the course carries a graduate course number and the student has registered for it as a graduate course.

Two laboratory rotations, each lasting five weeks, are required. One term of teaching is required.

MASTER’S DEGREES
M.Phil. See Degree Requirements under Policies and Regulations. Awarded to students who have fulfilled all the requirements for the Ph.D. except the prospectus, teaching requirement, and dissertation, normally at the end of the second year. Students are not admitted for this degree.

M.S. Awarded only to students who are not continuing for the Ph.D. degree but who have successfully completed one year of the doctoral program (i.e., passing of at least four graduate-level courses, including two Honors grades, and three successful laboratory rotations). Students are not admitted for this degree. Students who are eligible for or who have already received the M.Phil. will not be awarded the M.S.

Program materials are available upon request to the Department Registrar, Department of Cellular and Molecular Physiology, Yale School of Medicine, PO Box 208026, New Haven CT 06520-8026.

COURSES

C&M 550a / ENAS 550a / MCDB 550a / PHAR 550a, Physiological Systems Mark Saltzman and Stuart Campbell
The course develops a foundation in human physiology by examining the homeostasis of vital parameters within the body, and the biophysical properties of cells, tissues, and organs. Basic concepts in cell and membrane physiology are synthesized through exploring the function of skeletal, smooth, and cardiac muscle. The physical basis of blood flow, mechanisms of vascular exchange, cardiac performance, and regulation of overall circulatory function are discussed. Respiratory physiology explores the mechanics of ventilation, gas diffusion, and acid-base balance. Renal physiology examines the formation and composition of urine and the regulation of electrolyte, fluid, and acid-base balance. Organs of the digestive system are discussed from the perspective of substrate metabolism and energy balance. Hormonal regulation is applied to metabolic control and to calcium, water, and electrolyte balance. The biology of nerve cells is addressed with emphasis on synaptic transmission and simple neuronal circuits within the central nervous system. The special senses are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics. Graduate students evaluate research findings through literature review and weekly meetings with the instructor.

C&M 560b / ENAS 570b / MCDB 560b / PHAR 560b, Cellular and Molecular Physiology: Molecular Machines in Human Disease Emile Boulpaep
The course focuses on understanding the processes that transfer molecules across membranes at the cellular, molecular, biophysical, and physiological levels. Students learn about the different classes of molecular machines that mediate membrane transport, generate electrical currents, or perform mechanical displacement. Emphasis is placed on the relationship between the molecular structures of membrane proteins and their individual functions. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases.

C&M 630a / PATH 680a / PHAR 502a, Seminar in Molecular Medicine, Pharmacology, and Physiology Don Nguyen
Readings and discussion on a diverse range of current topics in molecular medicine, pharmacology, and physiology. The class emphasizes analysis of primary research literature and development of presentation and writing skills. Contemporary articles are assigned on a related topic every week, and a student leads discussions with input from faculty who are experts in the topic area. The overall goal is to cover a specific topic of medical relevance (e.g., cancer, neurodegeneration) from the perspective of three primary disciplines (i.e., physiology: normal function; pathology: abnormal function; and pharmacology: intervention).

C&M 710b / MB&B 710b, Electron Cryo-Microscopy for Protein Structure Determination Frederick Sigworth and Charles Sindelar
Understanding cellular function requires structural and biochemical studies at an ever-increasing level of complexity. The course is an introduction to the concepts and applications of high-resolution electron cryo-microscopy. This rapidly emerging new technique is the only method that allows biological macromolecules to be studied at all levels of resolution from cellular organization to near atomic detail. ½ Course cr