
Computer Science 1

Computer Science

A.K. Watson Hall, 203.432.1246
http://cpsc.yale.edu
M.S., M.Phil., Ph.D.

Chair
Holly Rushmeier

Directors of Graduate Studies
Lin Zhong (lin.zhong@yale.edu)
Vladimir Rokhlin

Professors Dana Angluin (Emerita), James Aspnes, Dirk Bergemann,* Abhishek
Bhattacharjee, Ronald Coifman,* Aaron Dollar,* Julie Dorsey, Joan Feigenbaum,
Michael Fischer, Robert Frank,* David Gelernter, Mark Gerstein,* John Lafferty,* Rajit
Manohar,* Vladimir Rokhlin,† Holly Rushmeier, Brian Scassellati, Martin Schultz
(Emeritus), Zhong Shao, Avi Silberschatz, Daniel Spielman, Phillipp Strack,* Leandros
Tassiulas,* Nisheeth Vishnoi, Y. Richard Yang, Lin Zhong, Steven Zucker†

Associate Professors Yang Cai, Amin Karbasi,* Theodore Kim, Smita Krishnaswamy,†
Sahand Negahban,* Charalampos Papamanthou, Ruzica Piskac, Robert Soule, Jakub
Szefer*

Assistant Professors Ian Abraham,* Kim Blenman,* Arman Cohan, Yongshan
Ding, Benjamin Fisch, Tesca Fitzgerald, Julian Jara-Ettinger,* Anurag Khandelwal,
Quanquan Liu, Tom McCoy,* Daniel Rakita, Katerina Sotiraki, David van Dijk,*
Marynel Vázquez, Andre Wibisono, Alex Wong, Zhitao Ying, Manolis Zampetakis

Senior Lecturers James Glenn, Stephen Slade

Lecturers Timos Antonopoulos, Timothy Barron, Ozan Erat, Kyle Jensen,* Janet
Kayfetz, Jay Lim, Dylan McKay, Cody Murphey, Sohee Park, Scott Petersen, Brad
Rosen, Alan Weide, Cecillia Xie

* A secondary appointment with primary affiliation in another department or school.

† A joint appointment with another department.

Fields of Study
Algorithms and computational complexity, artificial intelligence, data networking,
databases, graphics, machine learning, programming languages, robotics, scientific
computing, security and privacy, and systems.

Research Facilities
The department operates a high-bandwidth, local-area computer network-based mainly
on distributed workstations and servers with internet connections. Laboratory contains
specialized equipment for graphics, robotics, systems, and vision research. Various
printers, including color printers, as well as image scanners, are also available. The
primary educational facility consists of a large cluster of personal computers. This
facility is used for courses and unsponsored research by computer science majors and

http://cpsc.yale.edu
mailto:lin.zhong@yale.edu

2 Computer Science

first-year graduate students. Access to computing, through both the workstations and
remote login facilities, is available to everyone in the department.

Special Requirements for the Ph.D. Degree
There is no foreign language requirement. To be admitted to candidacy, a student must

1. pass ten courses (including CPSC 690 and CPSC 691) with at least two grades of
Honors, the remainder at least High Pass, including three advanced courses in an
area of specialization;

2. take six advanced courses in areas of general computer science;

3. successfully complete a research project in CPSC 690, CPSC 691, and submit a
written report on it to the faculty;

4. pass a qualifying examination in an area of specialization;

5. be accepted as a thesis student by a regular department faculty member;

6. serve as a teaching assistant for two terms; and

7. submit a written dissertation prospectus, with a tentative title for the dissertation.

Grades of Pass will not count toward the Ph.D. To satisfy the distribution requirement
(requirement 2 above), the student must take one course in programming languages
or systems, one programming-intensive course, two theory courses, and two in
application areas. In order to gain teaching experience, all graduate students are
required to serve as teaching assistants for two terms during their first three years of
study. All requirements for admission to candidacy must be completed prior to the
end of the third year. In addition to all other requirements, students must successfully
complete CPSC 991, Ethical Conduct of Research, prior to the end of their first year of
study. This requirement must be met prior to registering for the second year of study.

Master’s Degrees
M.Phil. See Degree Requirements under Policies and Regulations.

M.S. (en route to the Ph.D.) To qualify for the M.S., the student must pass eight
courses at the 500 level or above from an approved list. An average grade of at least
High Pass is required, with at least one grade of Honors.

Terminal Master’s Degree Program Students may also be admitted to a terminal
master’s degree program directly. There are two options for the terminal master’s
degree:

• Terminal Master’s Degree Program (coursework-only option) The requirements are the
same as for the M.S. en route to the Ph.D. This program is normally completed in
one year, but a part-time program may be spread over as many as four years.

• Terminal Master’s Degree Program (thesis option) To qualify for the M.S. thesis option
the student must (1) pass six courses at the 500 level or above from an approved list
with an average grade of at least High Pass and with at least one grade of Honors;
(2) complete a research thesis, generally in the second year; and (3) serve as a
teaching assistant for four terms. This program is normally completed in two years.

http://catalog.yale.edu/gsas/policies-regulations/

Computer Science 3

Please use the links provided for additional information about the department, faculty,
courses, and facilities online; You may also reach out to the departmental registrar at cs-
admissions@cs.yale.edu.

Courses
CPSC 510b, Physics Simulation for Movies  Theodore Kim
This course covers computational methods for simulating physics in movies. In
particular, we learn state-of-the-art methods for simulating fluids (fire and water) and
solids (muscles, clothing, and skin). The algorithms discussed span offline techniques
suitable for movies and touch on how they can be adapted into real-time techniques
for games. We cover finite difference and finite element representations and solver
practicalities such as conjugate gradients, preconditioning, and Newton iteration.
Prerequisite: The student must have taken CPSC 578 or its equivalent. Experience with
linear algebra (e.g. MATH 222 or 225 equivalents), Newtonian physics (e.g. PHYS 171
or 181 equivalents), and two semesters of programming experience will be assumed.
The student should be able to read and write in an imperative programming language
like C/C++ or Java.

CPSC 513a, Computer System Security  Timothy Barron
Overview of the principles and practice behind analyzing, designing, and implementing
secure computer systems. The course covers problems that have continued to plague
computer systems for years as well as recent events and research in this rapidly evolving
field. Students learn to think from the perspective of an adversary, to understand
systems well enough to see how their flaws could be exploited, and to consequently
defend against such exploitation. The course offers opportunities for hands-on
exploration of attacks and defenses in the contexts of web applications, networks,
and system-level soware. It also addresses ethical considerations and responsibilities
associated with security research and practice.

CPSC 516a, Lattices and Post-Quantum Cryptography  Katerina Sotiraki
This course explores the role of lattices in modern cryptography. In the last decades,
novel computational problems, whose hardness is related to lattices, have been
instrumental in cryptography by offering: (a) a basis for "post-quantum" cryptography,
(b) cryptographic constructions based on worst-case hard problems, and (c) numerous
celebrated cryptographic protocols unattainable from other cryptographic assumptions.
This course covers the foundations of lattice-based cryptography from fundamental
definitions to advanced cryptographic constructions. More precisely, we introduce
the Learning with Error (LWE) and the Short Integer Solutions (SIS) problems and
study their unique properties, such as the fact that their average-case hardness is based
on the worst-case hardness of lattice problems. Next, we cover lattice constructions
of advanced cryptographic primitives, such as fully homomorphic encryption and
signature schemes. Finally, we introduce some notions of quantum cryptography
and explore the role of lattices in this area. Overall, this course offers insights on the
foundations and recent advancements in lattice-based cryptography. Prerequisites:
CPSC 467/567 or equivalent and linear algebra.

CPSC 517a, Advanced Topics in Cryptography: Cryptography and Computation
 Charalampos Papamanthou

Traditional cryptography is mostly concerned with studying the foundations of
securing communication via, for example, encryption and message authentication

https://cpsc.yale.edu/department-information/
https://cpsc.yale.edu/people/faculty/
https://courses.yale.edu/?srcdb=202201&subject=CPSC
https://cpsc.yale.edu/department-information/computing-facilities/
mailto:cs-admissions@cs.yale.edu
mailto:cs-admissions@cs.yale.edu

4 Computer Science

codes. This class studies the applications of cryptography in securing computation.
Topics include, but not limited to, fundamental results and most recent progress in
oblivious computation and private information retrieval (PIR), zero-knowledge proofs,
secure computation, consensus algorithms, searchable encryption, and lattice-based
cryptography. The class focuses both on theory and applications. This is an advanced
course, which requires mathematical maturity as well as comfort with programming.
The course also assumes prior knowledge of fundamental notions in cryptography.
Prerequisite: CPSC 467 or equivalent.

CPSC 518b, Network System Design and Implementation: Internet Abstractions and
Layer-7 Control  Y. Richard Yang

Network systems have become pervasive due to the success of the Internet. However,
the design and implementation of network networked systems are challenging due to
the fundamental black-box nature of the Internet. In this course, we study the design
and implementation of network systems, with a focus on designing and implementing
fundamental abstractions and application-layer control of the Internet. Taken
concurrently with or aer CPSC 323.

CPSC 519b, Full Stack Web Programming  Alan Weide
This course introduces students to a variety of advanced soware engineering and
programming techniques in the context of full-stack web programming. The focus
of the course includes both client- and server-side programming (and database
programming), client/server communication, user interface programming, and parallel
programming.

CPSC 520b / ENAS 820b, Computer Architecture  Staff
This course offers a treatment of computer architectures for high-performance
and power/energy-efficient computer systems. Topics include the foundations
of general-purpose computing, including instruction set architectures, pipelines,
superscalar and out-of-order execution, speculation, support for precise exceptions,
and simultaneous multi-threading. We also cover domain-specific hardware (e.g.,
graphics processing units), and ongoing industry efforts to elevate them to the status
of first-class computing units. In tandem, we cover topics relevant to both general-
purpose and domain-specific computing, including memory hierarchies, address
translation and virtual memory, on-chip networks, machine learning techniques for
resource management, and coherence techniques. If time permits, we study the basics
of emerging non-classical computing paradigms like neuromorphic computing. Overall,
this course offers insights on how the computing industry is combating the waning of
traditional technology scaling via acceleration and heterogeneity. Prerequisites: Courses
similar to CPSC 323, 223, and 202. This is a programming-intensive course, so comfort
with large programming projects is essential.

CPSC 521a, Compilers and Interpreters  Jay Lim
Compiler organization and implementation: lexical analysis, formal syntax
specification, parsing techniques, execution environment, storage management, code
generation and optimization, procedure linkage, and address binding. The effect of
language-design decisions on compiler construction.

Computer Science 5

CPSC 522b, Operating Systems  Anurag Khandelwal
The design and implementation of operating systems. Topics include synchronization,
deadlocks, process management, storage management, file systems, security,
protection, and networking.

CPSC 524b, Parallel Programming Techniques  Quanquan Liu
Practical introduction to parallel programming, emphasizing techniques and algorithms
suitable for scientific and engineering computations. Aspects of processor and machine
architecture. Techniques such as multithreading, message passing, and data parallel
computing using graphics processing units. Performance measurement, tuning, and
debugging of parallel programs. Parallel file systems and I/O.

CPSC 526a, Building Distributed Systems  Y. Richard Yang
Ubiquitous services such as Google, Facebook, and Amazon run on the back of massive
distributed systems. This course covers the fundamental principles, abstractions, and
mechanisms that inform the design of such systems, as well as the practical details
of real-world implementations. Technical topics covered include properties such as
consistency, availability, durability, isolation, and failure atomicity; as well as protocols
such as RPC, consensus, consistent hashing, and distributed transactions. The final
project involves implementing a real-world distributed service.

CPSC 527a, C++ Programming for Stability, Security, and Speed  Michael Fischer
Computer programming involves both abstraction and practice. Lower-level
programming courses focus on learning how to correctly implement algorithms
for carrying out a task. This course treats a computer program as an artifact with
additional attributes of practical importance including execution efficiency, clarity and
readability, redundancy, safety in the face of unexpected or malicious environments,
and longevity—the ability to evolve over time as bugs are discovered and requirements
change. This course is taught using modern C++.

CPSC 529a, Principles of Computer System Design  Lin Zhong
Humans are stupid; computers are limited. Yet a collaboration of humans and
computers has led to ever more powerful and complex computer systems. This course
examines the limitations of humans and computers in this endeavor and how they
shape the design, implementation, and evaluation of computer systems. It surveys
the empirical knowledge reported by scholars and practitioners who overcome such
limitations. The lectures, reading assignments, and classroom discussions travel
through psychology and philosophy and revisit important results from theoretical
computer science, with a goal of elucidating the rationales behind the best practices in
computer systems research and development. Prerequisite: CPSC 323 or equivalent.
Students should have the ability to write significant system programs in at least one
system programming language (e.g., C, C++ and Rust).

CPSC 530b, Formal Semantics  Zhong Shao
Introduction to formal approaches to programming language design and
implementation. Topics include lambda calculus, type theory, denotational semantics,
type-directed compilation, higher-order modules, and application of formal methods to
systems soware and Internet programming.

CPSC 531a, Computer Music: Algorithmic and Heuristic Composition  Scott Petersen
Study of the theoretical and practical fundamentals of computer-generated music.
Music and sound representations, acoustics and sound synthesis, scales and tuning

6 Computer Science

systems, algorithmic and heuristic composition, and programming languages for
computer music. Theoretical concepts are supplemented with pragmatic issues
expressed in a high-level programming language.

CPSC 532b, Computer Music: Sound Representation and Synthesis  Scott Petersen
Study of the theoretical and practical fundamentals of computer-generated music,
with a focus on low-level sound representation, acoustics and sound synthesis, scales
and tuning systems, and programming languages for computer music generation.
Theoretical concepts are supplemented with pragmatic issues expressed in a high-level
programming language. Prerequisite: ability to read music.

CPSC 537a, Database Systems  Avi Silberschatz
An introduction to database systems. Data modeling. The relational model and the
SQL query language. Relational database design, integrity constraints, functional
dependencies, and natural forms. Object-oriented databases. Implementation of
databases: file structures, indexing, query processing, transactions, concurrency
control, recovery systems, and security.

CPSC 539a, Soware Engineering  Timos Antonopoulos
Introduction to building a large soware system in a team. Learning how to collect
requirements and write a specification. Project planning and system design. Increasing
soware reliability: debugging, automatic test generation. Introduction to type
systems, static analysis, and model checking.

CPSC 540a, Database Design and Implementation  Robert Soule
This course covers advanced topics in Database Systems, explaining on the material
covered in CPSC 437/537. Topics covered include complex data types, application
development, big data, data analytics, parallel and distributed storage, parallel and
distributed query processing, advanced indexing techniques, advanced relational
database design, and object-based databases.

CPSC 544b, Secure Decentralized Systems  Fan Zhang
Decentralized systems are computer systems composed of multiple autonomous
agents. A notable example is the Internet, whose crucial services such as DNS and
BGP are operated by autonomous organizations, realizing benefits such as strong
resiliency. Excitingly, recent developments in Internet-scale consensus (in particular
“blockchains”), cryptography, and hardware-assisted trustworthy computing have
enabled new kinds of decentralized systems. This course studies the theory and practice
of these recent developments. On the theory side, students read and discuss recent
papers published in related areas. On the practice side, students examine representative
state-of-the-art decentralized systems in the wild. This course is aimed at Ph.D. and
M.S. students. It is highly recommended for students to have passed a computer
security course like CPSC 513 and/or a cryptography course like CPSC 567.

CPSC 546a, Data and Information Visualization  Holly Rushmeier
Visualization is a powerful tool for understanding data and concepts. This course
provides an introduction to the concepts needed to build new visualization systems,
rather than to use existing visualization soware. Major topics are abstracting
visualization tasks, using visual channels, spatial arrangements of data, navigation in
visualization systems, using multiple views, and filtering and aggregating data. Case
studies to be considered include a wide range of visualization types and applications in
humanities, engineering, science, and social science. Prerequisite: CPSC 223.

Computer Science 7

CPSC 547a, Introduction to Quantum Computing  Yongshan Ding
This course introduces the fundamental concepts in the theory and practice of quantum
computing. Topics covered include information processing, quantum programming,
quantum compilation, quantum algorithms, and error correction. The objective of the
course is to engage students in applying fresh thinking to what computers can do. We
establish an understanding of how quantum computers store and process data, and we
discover how they differ from conventional digital computers. We anticipate this course
will be of interest to students working in computer science, electrical engineering,
physics, or mathematics. Students must be comfortable with programming, discrete
probability, and linear algebra. Prior experience in quantum computing is useful but
not required.

CPSC 551b, The User Interface  David Gelernter
The user interface (UI) in the context of modern design, where tech has been a strong
and consistent influence from the Bauhaus and U.S. industrial design of the 1920s
and 1930s through the IBM-Eames design project of the 1950s to 1970s. The UI in the
context of the windows-menus-mouse desktop, as developed by Alan Kay and Xerox in
the 1970s and refined by Apple in the early 1980s. Students develop a detailed design
and simple implementation for a UI.

CPSC 552b / AMTH 552b / CB&B 663b / GENE 663b, Deep Learning Theory and
Applications  Smita Krishnaswamy

Deep neural networks have gained immense popularity within the past decade due to
their success in many important machine-learning tasks such as image recognition,
speech recognition, and natural language processing. This course provides a principled
and hands-on approach to deep learning with neural networks. Students master the
principles and practices underlying neural networks, including modern methods of
deep learning, and apply deep learning methods to real-world problems including
image recognition, natural language processing, and biomedical applications. Course
work includes homework, a final exam, and a final project—either group or individual,
depending on enrollment—with both a written and oral (i.e., presentation) component.
The course assumes basic prior knowledge in linear algebra and probability.
Prerequisites: CPSC 202 and knowledge of Python programming.

CPSC 554a, Soware Analysis and Verification  Ruzica Piskac
Introduction to concepts, tools, and techniques used in the formal verification of
soware. State-of-the-art tools used for program verification; detailed insights into
algorithms and paradigms on which those tools are based, including model checking,
abstract interpretation, decision procedures, and SMT solvers.

CPSC 555a, Economics and Computation  Yang Cai
A mathematically rigorous investigation of the interplay of economic theory and
computer science, with an emphasis on the relationship of incentive-compatibility
and algorithmic efficiency. Particular attention to the formulation and solution of
mechanism-design problems that are relevant to data networking and Internet-based
commerce.

CPSC 562b, Spectral Graph Theory  Dan Spielman
An introduction to spectral graph theory motivated by computer science, covering
advanced topics in linear algebra and exploring the combinatorial meaning of the
eigenvalues and eigenvectors of matrices associated with graphs. Applications to

8 Computer Science

optimization, numerical linear algebra, error-correcting codes, pseodorandomness,
and the discovery of graph structure. Prerequisites: linear algebra, graph theory, and
comfort with proof-based math courses.

CPSC 564a, Algorithms and their Societal Implications  Nisheeth Vishnoi
Today’s society comprises humans living in an interconnected world that is intertwined
with a variety of sensing, communicating, and computing devices. Human-generated
data is being recorded at unprecedented rates and scales, and powerful AI and ML
algorithms, which are capable of learning from such data, are increasingly controlling
various aspects of modern society: from social interactions. These data-driven decision-
making algorithms have a tremendous potential to change our lives for the better,
but, via the ability to mimic and nudge human behavior, they also have the potential
to be discriminatory, reinforce societal prejudices, violate privacy, polarize opinions,
and influence democratic processes. Thus, designing effective tools to govern modern
society which reinforce its cherished values such as equity, justice, democracy, health,
privacy, etc. has become paramount and requires a foundational understanding of
how humans, data, and algorithms interact. This course is for students who would
like to understand and address some of the key challenges and emerging topics at the
aforementioned interplay between computation and society. On the one hand, we study
human decision-making processes and view them through the lens of computation, and
on the other hand we study and address the limitations of artificial decision-making
algorithms when deployed in various societal contexts. The focus is on developing
solutions through a combination of foundational work such as coming up with the
right definitions, modeling, algorithms, and empirical evaluation. The current focus
is on bias and privacy, with additional topics including robustness, polarization,
and democratic representation. The grade will be based on class participation and
a project. The project grade will be determined by a midterm and endterm report/
presentation. The course has four primary modules: (1) Data: human-generated
data; data collection and aggregation; (2) Decision-Making Algorithms: human
decision-making algorithms; traditional algorithmic decision-making models and
methods; machine learning-based decision-making models and methods; (3) Bias:
socio-technical contexts and underlying computational problems; definitions of
fairness; interventions for ensuring fairness; human biases through the lens of
computation; privacy; need for definitions of privacy; differential privacy; beyond
differential privacy; (4) Other topics: robustness; polarization; elections and social
choice. Solid mathematical and programming background is necessary to enroll in this
course. CPSC 365 and S&DS 251 are recommended.

CPSC 565b, Theory of Distributed Systems  James Aspnes
Models of asynchronous distributed computing systems. Fundamental concepts of
concurrency and synchronization, communication, reliability, topological and geometric
constraints, time and space complexity, and distributed algorithms.

CPSC 566a or b, Blockchain and Cryptocurrency  Staff
This course is an introduction to blockchain systems, such as Bitcoin and Ethereum.
We begin with a brief history of blockchains and an overview of how they are being
used today before launching into foundational topics, including distributed consensus,
smart contracts, cryptographic building blocks from signatures to authenticated
datastructures, and the economics of blockchains. We then cover advanced topics
including the scalability and interoperability of blockchain systems and applications

Computer Science 9

such as “decentralized finance” (DeFi). The lectures and assignments engage students
in both theoretical and applied aspects of blockchain systems. The course assumes
background in various fundamental areas of CS, including discrete math, probability,
algorithms, data structures, cryptography, and networks.

CPSC 567b, Introduction to Cryptography  Katerina Sotiraki
This course introduces modern symmetric and public-key cryptography as well as their
broad applications, both from a theoretical and practical perspective. There is an initial
emphasis on fundamental cryptographic primitives (e.g., block ciphers, pseudorandom
functions, pseudorandom generators, one-way functions), their concrete efficiency and
implementation, as well as their security definitions and proofs. Ways of combining
such primitives that lead to more complex objects used to secure today’s internet (e.g.,
via TLS), such as key exchange, randomized encryption, message authentication
codes, and digital signatures are also studied. The last part of the course is devoted
to modern and more advanced applications of cryptography (some of which are
deployed at scale today), such as authenticated data structures, zero-knowledge proofs,
oblivious RAM, private information retrieval, secret sharing, distributed consensus, and
cryptocurrencies. (e.g, Bitcoin).

CPSC 568a, Computational Complexity  Dylan McKay
Introduction to the theory of computational complexity. Basic complexity classes,
including polynomial time, nondeterministic polynomial time, probabilistic polynomial
time, polynomial space, logarithmic space, and nondeterministic logarithmic space. The
roles of reductions, completeness, randomness, and interaction in the formal study of
computation.

CPSC 570b, Artificial Intelligence  Stephen Slade
Introduction to artificial intelligence research, focusing on reasoning and perception.
Topics include knowledge representation, predicate calculus, temporal reasoning,
vision, robotics, planning, and learning.

CPSC 573a, Intelligent Robotics Laboratory  Brian Scassellati
Students work in small teams to construct novel research projects using one of a variety
of robot architectures. Project topics may include human-robot interaction, adaptive
intelligent behavior, active perception, humanoid robotics, and socially assistive
robotics.

CPSC 574a or b, Computational Intelligence for Games  James Glenn
A seminar on current topics in computational intelligence for games, including
developing agents for playing games, procedural content generation, and player
modeling. Students read, present, and discuss recent papers and competitions, and
complete a term-long project that applies some of the techniques discussed during the
term to a game of their choice.

CPSC 575a / ENAS 575a / INP 575a, Computational Vision and Biological Perception
 Steven Zucker

An overview of computational vision with a biological emphasis. Suitable as an
introduction to biological perception for computer science and engineering students,
as well as an introduction to computational vision for mathematics, psychology, and
physiology students.

10 Computer Science

CPSC 576b / AMTH 667b / ENAS 576b, Advanced Computational Vision  Steven
Zucker

Advanced view of vision from a mathematical, computational, and neurophysiological
perspective. Emphasis on differential geometry, machine learning, visual
psychophysics, and advanced neurophysiology. Topics include perceptual organization,
shading, color, and texture.

CPSC 577b, Natural Language Processing  Arman Cohan
Linguistic, mathematical, and computational fundamentals of natural language
processing (NLP). Topics include part of speech tagging, Hidden Markov models,
syntax and parsing, lexical semantics, compositional semantics, machine translation,
text classification, discourse, and dialogue processing. Additional topics such as
sentiment analysis, text generation, and deep learning for NLP.

CPSC 578a, Computer Graphics  Theodore Kim
Introduction to the basic concepts of two- and three-dimensional computer graphics.
Topics include affine and projective transformations, clipping and windowing,
visual perception, scene modeling and animation, algorithms for visible surface
determination, reflection models, illumination algorithms, and color theory.

CPSC 579b, Advanced Topics in Computer Graphics  Julie Dorsey
An in-depth study of advanced algorithms and systems for rendering, modeling, and
animation in computer graphics. Topics vary and may include reflectance modeling,
global illumination, subdivision surfaces, NURBS, physically based fluids systems, and
character animation.

CPSC 581b, Introduction to Machine Learning  Alex Wong
This course focuses on fundamental topics in machine learning. We begin with an
overview of different components of machine learning and types of learning paradigms.
We introduce a linear function, discuss how one can train a linear function on a given
dataset, and utilize it to tackle classification and regression problems. We then consider
kernel methods to enable us to solve nonlinear problems. Additionally, we introduce
the concept of generalization error and overfitting. We discuss the role of regularization
and extend linear regression to ridge regression. We also cover topics in optimization,
beginning from gradient descent and extending it to stochastic gradient descent
and its momentum variant. We also cover the concept of alternating optimization
and topics within it. We introduce the curse of dimensionality and discuss topics
on dimensionality reduction. Finally, we conclude the course with neural networks:
how to build them using the topics discussed, how to optimize them, and how to
apply them to solve a range of machine learning tasks. Prerequisites: Courses in data
structures and object-oriented programming (e.g. CPSC 223a or equivalent courses),
foundational mathematical tools such as discrete math and linear algebra (e.g. CPSC
202 or equivalent courses), calculus (e.g. MATH 112, MATH 115, MATH 120, or
equivalent courses), linear algebra (e.g. MATH 225, or equivalent courses), and artificial
intelligence (e.g. CPSC 370/570). A background in statistics is useful but not required.
Experience in programming with Python and familiarity with Google Colab and
numerical and image processing packages (i.e. NumPy, SciPy) is helpful.

CPSC 582b, Current Topics in Applied Machine Learning  David van Dijk
We cover recent advances in machine learning that focus on real-world data. We discuss
a wide range of methods and their applications to diverse domains, such as finance,

Computer Science 11

health care, genomics, protein folding, drug discovery, neuroscience, and natural
language processing. The seminar is based on a series of lectures by the instructor and
guest lecturers, as well as student presentations. The latter are expected to be on recent
publications from leading journals and conferences in the field and are followed by
discussions. A final project involves the application of a machine-learning method to
real-world data. Graduate students are required to work on projects, which are optional
for undergraduates. Prerequisites: mathematical tools for computer science (CPSC 202
or equivalent course), linear algebra (MATH 222/MATH 225 or equivalent course),
calculus (MATH 120 or equivalent course), or permission of the instructor; and basic
coding knowledge (e.g., Python).

CPSC 583a, Deep Learning on Graph-Structured Data  Rex Ying
Graph structure emerges in many important domain applications, including but
not limited to computer vision, natural sciences, social networks, languages, and
knowledge graphs. This course offers an introduction to deep learning algorithms
applied to such graph-structured data. The first part of the course is an introduction
to representation learning for graphs and covers common techniques in the field,
including distributed node embeddings, graph neural networks, deep graph generative
models, and non-Euclidean embeddings. The first part also touches upon topics of
real-world significance, including auto-ML and explainability for graph learning. The
second part of the course covers important applications of graph machine learning. We
learn ways to model data as graphs and apply graph learning techniques to problems
in domains including online recommender systems, knowledge graphs, biological
networks, physical simulations and graph mining. The course covers many deep
techniques (graph neural networks, graph deep generative models) catered to graph
structures. We cover basic deep learning tutorials in this course. Knowledge of graphs
as a data structure, and understanding of basic graph algorithms are essential for
applying machine learning to graph-structured data. Familiarity with Python and
important libraries such as Numpy and Pandas are helpful. A foundation of deep neural
networks is highly recommended. Experience in machine Learning and Graph Theory
are welcomed as well.

CPSC 586b, Probabilistic Machine Learning  Andre Wibisono
This course provides an overview of the probabilistic frameworks for machine learning
applications. The course covers probabilistic generative models, learning and inference,
algorithms for sampling, and a survey of generative diffusion models. This course
studies the theoretical analysis of the problems and how to design algorithms to solve
them. This course familiarizes students with techniques and results in literature and
prepares them for research in machine learning. Prerequisites: Knowledge of machine
learning, linear algebra, probability, and calculus.

CPSC 611a, Topics in Computer Science and Global Affairs  Joan Feigenbaum and Ted
Wittenstein

This course focuses on “socio-technical” problems in computing and international
relations. These are problems that cannot be solved through technological progress
alone but rather require legal, political, or cultural progress as well. Examples include
but are not limited to cyber espionage, disinformation, ransomware attacks, and
intellectual-property the. This course is offered jointly by the SEAS Computer Science
Department and the Jackson School of Global Affairs. It is addressed to graduate
students who are interested in socio-technical issues but whose undergraduate course

12 Computer Science

work may not have addressed them; it is designed to bring these students rapidly to the
point at which they can do research on socio-technical problems. Prerequisites: Basics
of cryptography and computer security (as covered in Yale’s CPSC 467), networks (as
covered in Yale’s CPSC 433), and databases (as covered in Yale’s CPSC 437) helpful but
not required.

CPSC 612b, Topics in Algorithmic Game Theory  Yang Cai
The course focuses on algorithms and the complexity of equilibrium computation
as well as its connection with learning theory and optimization. As many recent
machine learning approaches have moved from an optimization perspective to an
“equilibration” perspective, where a good model is framed as the equilibrium of a
game. The intersection of game theory, learning theory, and optimization is becoming
increasingly relevant. The goal of the course is to cover the fundamentals and bring
students to the frontier of this active research area. Prerequisite: A course in algorithms
(CPSC 365 or 366) and a course in probability theory (MATH/S&DS 241). A course in
algorithmic game theory (CPSC 455/555) is helpful but not required.

CPSC 640b / AMTH 640b / MATH 640b, Topics in Numerical Computation
 Vladimir Rokhlin

This course discusses several areas of numerical computing that oen cause difficulties
to non-numericists, from the ever-present issue of condition numbers and ill-posedness
to the algorithms of numerical linear algebra to the reliability of numerical soware.
The course also provides a brief introduction to “fast” algorithms and their interactions
with modern hardware environments. The course is addressed to Computer Science
graduate students who do not necessarily specialize in numerical computation; it
assumes the understanding of calculus and linear algebra and familiarity with (or
willingness to learn) either C or FORTRAN. Its purpose is to prepare students for
using elementary numerical techniques when and if the need arises.

CPSC 646a, Combinatorial Optimization and Approximation Algorithms  Staff
The course covers the design and analysis of approximation algorithms via
combinatorial techniques. We start with classical polynomial time combinatorial
optimization problems, including matchings, flows, cuts, and submodular functions.
In the latter half, we discuss techniques for designing approximation algorithms for
NP-hard problems, including the primal-dual method, randomized rounding, iterative
relaxations, and local search. Prerequisites: some background in algorithms and discrete
mathematics as well as familiarity with linear programming.

CPSC 648a, Quantum Codes and Applications to Complexity  Staff
The course covers the theory of quantum error correction and its applications to
quantum complexity theory. We start with basic quantum codes and then progress
towards more advanced code constructions, in particular good LDPC codes. In the
later half, we discuss various intriguing applications of quantum codes in quantum
complexity, in particular how they are used in NLTS construction. This course
should be accessible to students without any background in quantum computing and
complexity theory. Students with no such background are provided with additional
reading material to catch up. Please reach out to the instructor if you have any
questions.

CPSC 690a or b, Independent Project I  Staff
By arrangement with faculty.

Computer Science 13

CPSC 691a or b, Independent Project II  Staff
By arrangement with faculty.

CPSC 692a, Independent Project  Holly Rushmeier
Individual research for students in the M.S. program. Requires a faculty supervisor and
the permission of the director of graduate studies.

CPSC 752b / CB&B 752b / MB&B 752b and MB&B 753b and MB&B 754b / MB&B 753b
and MB&B 754b / MB&B 754b / MCDB 752b, Biomedical Data Science: Mining
and Modeling  Mark Gerstein and Matthew Simon

Biomedical data science encompasses the analysis of gene sequences, macromolecular
structures, and functional genomics data on a large scale. It represents a major practical
application for modern techniques in data mining and simulation. Specific topics
to be covered include sequence alignment, large-scale processing, next-generation
sequencing data, comparative genomics, phylogenetics, biological database design,
geometric analysis of protein structure, molecular-dynamics simulation, biological
networks, normalization of microarray data, mining of functional genomics data sets,
and machine-learning approaches to data integration. Prerequisites: biochemistry and
calculus, or permission of the instructor.

CPSC 776b, Topics in Industrial AI Applications  Xiuye (Sue) Chen
Techniques developed in AI research are now used in many industrial applications,
ranging from voice assistants to scientific modeling to generative AI. The goal of this
seminar is for students to acquire familiarity with current topics relevant to industry,
and to apply related approaches to problems in their respective areas of expertise.
Each year the course covers several different topics in industrial AI research, broadly
defined. These topics may include edge ML, speech recognition, natural language
processing, computer vision, ambient intelligence, generative AI, and applications to
life sciences and healthcare. In most meetings, one or more key papers are discussed,
and one student is chosen in advance to present the main ideas in the paper and guide
the discussion. We also have guest speakers from industry to present or lead discussions
on current industrial research topics. Periodically, we devote meeting sessions to discuss
formulation of new research directions that leverage students’ ongoing research in other
areas. Grades are based in equal parts on discussion leadership, discussion participation,
and research-problem formulation.

CPSC 990a, Ethical Conduct of Research for Master’s Students  Inyoung Shin
This course forms a vital part of research ethics training, aiming to instill moral
research codes in graduate students of computer science, math, and applied math.
By devling into case studies and real-life examples related to research misconduct,
students will grasp core ethical principles in research and academia. The course also
offers an opportunity to explore the societal impacts of research in computer science,
math, and applied math. This course is designed specifically for first-year graduate
students in computer science/applied math/math. Successful completion of the course
necessitates in-person attendance on eight occasions; virtual participation will not fulfill
this requirement. In cases where illness, job interviews, or unforeseen circumstances
prevent attendance, makeup sessions will be offered. This course is 0 credits for YC
students.  0 Course cr

14 Computer Science

CPSC 991a / MATH 991a, Ethical Conduct of Research  Inyoung Shin
This course forms a vital part of research ethics training, aiming to instill moral
research codes in graduate students of computer science, math, and applied math.
By delving into case studies and real-life examples related to research misconduct,
students grasp core ethical principles in research and academia. The course also
offers an opportunity to explore the societal impacts of research in computer science,
math, and applied math. This course is designed specifically for first-year graduate
students in computer science, applied math, and math. Successful completion of the
course necessitates in-person attendance on eight occasions; virtual participation
does not fulfill this requirement. In cases where illness, job interviews, or unforeseen
circumstances prevent attendance, makeup sessions are offered.  0 Course cr

CPSC 992a, Academic Writing  Janet Kayfetz
This course is an intensive analysis of the principles of excellent writing for Ph.D.
students and scientists preparing a range of texts including research papers, conference
posters, technical reports, research statements, grant proposals, correspondence,
science and industry blogs, and other relevant documents. We look at the components
of rhetorical positioning in the development of a clear, interesting, and rigorous
science research paper. Some of the sub-genres we analyze and practice include the
introduction, literature review, methodology, data commentary, results/discussion,
conclusion, and abstract. In addition to the research paper, we practice other types of
texts including research statements, requests for funding, bio-data statements, and
blogs. We also discuss how writers can develop content and fluency as well as strategies
for redraing and editing. Students receive detailed feedback on their writing with a
focus on clarity, precision, tone, and readability.  0 Course cr

