EARTH AND PLANETARY SCIENCES

Kline Geology Laboratory, 203.432.3124
http://earth.yale.edu
M.S., M.Phil., Ph.D.

Chair
David Bercovici

Director of Graduate Studies
Maureen Long

Professors Jay Ague, David Bercovici, Ruth Blake, Mark Brandon, Derek Briggs, David Evans, Alexey Fedorov, Debra Fischer, Jacques Gauthier, Shun-ichiro Karato, Jun Korenaga, Maureen Long, Jeffrey Park, Peter Raymond, James Saiers, Mary-Louise Timmermans, John Wettlaufer

Associate Professor Noah Planavsky

Assistant Professors Bhart-Anjan Bhullar, Pincelli Hull, Juan Lora, Alan Rooney, Lidya Tarhan

FIELDS OF STUDY
Fields include geochemistry and petrology, geophysics, ice physics, mineral physics, seismology and geodynamics, structural geology and tectonics, paleontology and paleoecology, oceanography, meteorology, cryospheric dynamics, and climatology.

Students admitted in 2020 or earlier have the option of receiving a degree in either Geology and Geophysics or Earth and Planetary Sciences. Students admitted in 2021 and subsequent years will receive a degree in Earth and Planetary Sciences.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE
There is no formal language requirement and no required curriculum. Students plan their course of study in consultation with their adviser to meet individual interests and needs and to lay the foundations for dissertation research. At the end of the first year the faculty reviews the standing of each student. A student recommended for continuation in the Ph.D. program will be so notified. Some students may be encouraged at that time to pursue only the M.S. degree. At the end of the second year the faculty reviews each student’s overall performance to determine whether the student is qualified to continue for the Ph.D. degree. In order to qualify, a student must have met the Graduate School Honors requirement and maintained a better than passing record in the areas of concentration. Also, a student must have satisfied the requirements of the Qualifying Exam by having completed two Research Discourses termed (according to their degree of development) the Minor and the Major Discourses. The Major Discourse will be presented at the Qualifying Presentation, followed by an extended question period wherein the student must successfully defend both Discourses. Remaining degree requirements include a dissertation review in the third year; the preparation and defense of the dissertation; and the submission of the dissertation to the Graduate School.

Teaching experience is regarded as an integral part of the graduate training program in Earth and Planetary Sciences. For this reason, all students are required to serve as teaching fellows for two terms during the course of their predoctoral training. Students who require additional support from the Graduate School must teach additional terms, if needed, after they have fulfilled the academic teaching requirement.

In addition to all other requirements, students must successfully complete EPS 710, Responsible and Ethical Conduct of Research, prior to the end of their first year of study.

MASTER’S DEGREES

M.Phil. See Degree Requirements under Policies and Regulations.

M.S. Awarded only to students who are not continuing for the Ph.D. Students are not admitted for this degree. Minimum requirements include satisfactory performance in a course of study (typically six or more courses with at least one Honors grade in a graduate-level class) that is approved by the director of graduate studies (DGS), and a research project with the approval of the DGS and the student’s thesis committee.

Program materials are available at http://earth.yale.edu or upon request to the Director of Graduate Studies, Department of Earth and Planetary Sciences, Yale University, PO Box 208109, New Haven CT 06520-8109; email, dgs@eps.yale.edu.

COURSES

EPS 510a, Introduction to Isotope Geochemistry  Alan Rooney
An overview of the fundamental principles of stable and radiogenic isotope geochemistry. Emphasis is placed on applications to specific geologic problems, including petrogenesis, geochronology, geothermometry, surface processes, hydrology, and biogeochemistry.
EPS 512a, Structural Geology  Mark Brandon
An introduction to the origin and structure of the lithosphere and continental and oceanic crust. Topics include what controls the solid versus fluid behavior of rocks during deformation, and what controls the character and motion of tectonic plates. Laboratory exercises and field trips.

EPS 519a, Introduction to the Physics and Chemistry of Earth Materials  Shun-ichiro Karato
Basic principles that control the physical and chemical properties of Earth materials. Equation of state, phase transformations, chemical reactions, elastic properties, diffusion, kinetics of reaction, and mass/energy transport.

EPS 521b, Geophysical Fluid Dynamics  Mary-Louise Timmermans
A survey of fluid dynamics, with applications to oceans and atmospheres. Mathematical models illustrate the fundamental dynamical principles of geophysical fluid phenomena such as large-scale flows, waves, boundary layers, and flow stability. Concepts are investigated through laboratory experiments in a rotating water tank. Prerequisite: differential equations and introductory fluid mechanics.

EPS 522b, Physics of Weather and Climate  Juan Lora
The climatic system; survey of atmospheric behavior on time scales from days (i.e., weather) to decades (i.e., climate); formulation of mathematical equations describing weather and climate with selected applications to small- and large-scale phenomena.

EPS 523a, Vertebrate Paleontology  Jacques Gauthier
Phylogeny and evolution of the major clades of vertebrates from Cambrian to Recent, as inferred mainly from the fossilized remains of the musculoskeletal system (cranial, axial, and appendicular skeletons). Special attention given to the evolution of vertebrate feeding, locomotor, and sensory systems.

EPS 528a, Science of Complex Systems  Jun Korenaga
Introduction to the quantitative analysis of systems with many degrees of freedom. Fundamental components in the science of complex systems, including how to simulate complex systems, how to analyze model behaviors, and how to validate models using observations. Topics include cellular automata, bifurcation theory, deterministic chaos, self-organized criticality, renormalization, and inverse theory.

EPS 529b, Introduction to Geodynamics  Jun Korenaga
This introductory course starts with the basics of continuum mechanics and covers a range of topics in geodynamics and relevant fields including the structure and dynamics of lithosphere, thermal convection and magmatism, Rayleigh-Taylor instability and plume dynamics, geoid and dynamic topography, and the thermal history of the core and geodynamo.

EPS 535a, Physical Oceanography  Alexey Fedorov
An introduction to ocean dynamics and physical processes controlling the large-scale ocean circulation, ocean stratification, the Gulf Stream, wind-driven waves, tides, tsunamis, coastal upwelling, and other oceanic phenomena. Equations of motion. Modern observational, theoretical, and numerous other techniques used to study the ocean. The ocean role in climate and global climate change.

EPS 538a / ASTR 520a, Computational Methods in Astrophysics and Geophysics  Paolo Coppi
The analytic and numerical/computational tools necessary for effective research in astronomy, geophysics, and related disciplines. Topics include numerical solutions to differential equations, spectral methods, and Monte Carlo simulations. Applications are made to common astrophysical and geophysical problems including fluids and N-body simulations.

EPS 555a, Rock Formation in Mountain Belts  Jay Ague
Examination of the fundamental principles governing the formation of metamorphic and igneous rocks during mountain building. Topics include processes of heat and mass transfer in orogenic belts, generation of igneous rocks in continental and subduction settings, ultra-high-pressure and ultra-high-temperature metamorphism, spatial and temporal patterns of petrologic processes throughout geologic time, and pressure-temperature-time paths of metamorphic and igneous rocks.

EPS 556a, Introduction to Seismology  Maureen Long
Earthquakes and seismic waves, P and S waves, surface waves and free oscillations. Remote sensing of Earth's deep interior and faulting mechanisms. Prerequisites: MATH 120, 222, and PHYS 181, or equivalents.

EPS 564a, Paleocology  Pinzelli Hull
This course in paleoecology reviews basic ecological concepts in the context of classic and recent papers.

EPS 658b, Seismic Data Analysis  Jeffrey Park
This course covers several techniques of seismic data analysis, revisiting some classical results from global seismology that helped to define our knowledge of Earth's interior. Wave-propagation behavior in the context of simple theories of ray tracing, tomography, shear-wave birefringence, free-oscillation frequency shifts, attenuation, receiver functions, surface-wave dispersion, and other observables.

EPS 659a, Time Series Analysis with Geoscience Applications  Jeffrey Park
Introductory course in geoscience data analysis and time series methods, with emphasis on multiple-taper time series techniques. Examples drawn from seismological, paleoclimatic, and historical climate data. Weekly computer assignments. Python proficiency helpful.

EPS 703a or b / E&EB 930a or b, Seminar in Systematics  Jacques Gauthier
Topics and class time are chosen by the participants, and have included reading books and/or a series of papers on particular topics (e.g., homology; morphological phylogenetics; evolution of egg colors and exposed nesting in dinosaurs/birds; origin of snake ecology; conflicts between morphology and molecules; role of fossils in phylogenetic inference).
EPS 721a, Topics in Geobiology  Lidya Tarhan
In this course, students explore recent papers and discuss emerging ideas concerning life-environment interactions through Earth's history, with a particular focus on integrating paleontological, sedimentological, and geochemical records.

EPS 744a or b, Seminar in Mantle and Core Processes  Staff
The seminar covers advanced topics concerning physical and chemical processes in the mantle and core of the Earth and planets. Specific topic and hour are arranged in consultation with enrolled graduate students.

EPS 755a and EPS 756b, Seminar in Earth System Science  Staff
The purpose of this yearlong seminar series is to build community and engage students, postdocs, researchers, and faculty in problems at the intersection of multiple components of the earth system. In the fall term, faculty lead discussion on their research and related cutting-edge questions in their field of interest. In the spring term, students and postdocs lead the seminar series on topics related to their current (or planned) research.

EPS 789a, Current Topics in Metamorphic Processes  Jay Ague
This seminar is based mostly on readings from the literature and focuses on emerging issues in metamorphic petrology, including deep element cycling, non-lithostatic pressure, and ultrahigh-temperature and ultrahigh-pressure metamorphism.