ENGINEERING & APPLIED SCIENCE

17 Hillhouse Avenue, 203.432.4220
http://seas.yale.edu
M.S., M.Phil., Ph.D.

Dean
Jeffrey Brock

Deputy Dean
Vincent Wilczynski

Assistant Dean
Sarah M. Miller

BIOMEDICAL ENGINEERING

Chair
Jay Humphrey

Director of Graduate Studies
Richard Carson (richard.carson@yale.edu)

Professors Helene Benveniste,* Joerg Bewersdorf,* Richard Carson,† Nicholas Christakis,* Todd Constable,* Robin de Graaf,* James Duncan,‡ Jay Humphrey, Fahmee Hyder,† Francis Lee,* Andre Levchenko, Graeme Mason,* Evan Morris,* Laura Niklason,* Xenophon Papademetris,* Douglas Rothman,‡ W. Mark Saltzman, Martin Schwartz,* Fred Sigworth,* Albert Sinusas,* Brian Smith,* Lawrence Staib,‡ Hemant Tagare,* Paul Van Tassel,* Steven Zucker‡

Associate Professors Stuart Campbell, Tarek Fahmy, Rong Fan, Gigi Galiana,* Anjelica Gonzalez, Michelle Hampson,* Henry Hsia,* Farren Issacs,* Themis Kyriakides,‡ Chi Liu,* Kathryn Miller-Jensen, Michael Murrell, Dana Peters,* Jiangbing Zhou*

Assistant Professors Nicha Dvornek,* Ansel Hillmer,* Michael Mak, Dustin Scheinost,* Gregory Tietjen*

* A secondary appointment with primary affiliation in another department or school.
‡ A joint appointment with another department.

CHEMICAL & ENVIRONMENTAL ENGINEERING

Chair
Jaehong Kim

Director of Graduate Studies
Paul Van Tassel (paul.vantassel@yale.edu (paulvantassel@yale.edu))

Professors Eric Altman, Paul Anastas,† Michelle Bell,* Ruth Blake,* Menachem Elimelech, Gary Haller (Emeritus), Edward Kaplan,* Jaehong Kim, Michael Loewenberg, Andrew Miranker,* Jordan Peccia, Lisa Pfefferle, Daniel Rosner (Emeritus), W. Mark Saltzman,* Udo Schwarz,* T. Kyle Vanderlick, Paul Van Tassel, Julie Zimmerman‡

Associate Professors John Fortner, Drew Gentner

Assistant Professors Peijun Guo, Amir Haji-Akbari, Shu Hu, Mingjiang Zhong

Lecturer Aniko Bezur

* A secondary appointment with primary affiliation in another department or school.
‡ A joint appointment with another school.

COMPUTER SCIENCE

Chair
Zhong Shao

Director of Graduate Studies
Vladimir Rokhlin (108 AKW, 203.432.1283, vladimir.rokhlin@yale.edu)

Associate Professors Abhishek Bhattacharjee, Theodore Kim, Sahand Negahban,* Ruzica Piskac, Jakub Szefer*

Assistant Professors Yang Cai, Wenjun Hu,* Julian Jara-Ettinger,* Amin Karbasi,* Smita Krishnaswamy,* Robert Soule, David van Dijk,* Marynel Vázquez

Senior Lecturers James Glenn, Stephen Slade

Lecturers Andrew Bridy,† Benedict Brown, Kyle Jensen,* Scott Petersen, Brad Rosen, Andrew Sherman, Cecillia Xie

* A secondary appointment with primary affiliation in another department or school.
† A joint appointment with another department.

ELECTRICAL ENGINEERING

Chair
Leandros Tassiulas

Director of Graduate Studies
Hong Tang (hong.tang@yale.edu)

Professors Hui Cao,* James Duncan,† Jung Han, Roman Kuc, Tso-Ping Ma, Rajit Manohar, A. Stephen Morse, Kumpati Narendra, Daniel Prober,† Mark Reed, Peter Schultheiss (Emeritus), Lawrence Staib,† Hemant Tagare,* Hong Tang, Leandros Tassiulas, J. Rimas Vaisnys, Y. Richard Yang†

Associate Professors Fengnian Xia, Jakub Szefer, Sekhar Tatikonda

Assistant Professors Wenjun Hu, Amin Karbasi, Priyadarshini Panda

Senior Lecturer Richard Lethin

* A secondary appointment with primary affiliation in another department or school.
† A joint appointment with another department.

MECHANICAL ENGINEERING & MATERIALS SCIENCE

Chair
Udo Schwarz

Director of Graduate Studies
Jan Schroers (jan.schroers@yale.edu)

Associate Professor Judy Cha

Assistant Professors Rebecca Kramer-Bottiglio, Diana Qiu, Madhusudhan Venkadesan

Lecturers Beth Anne Bennett, Joran Booth, Joseph Zinter

* A secondary appointment with primary affiliation in another department or school.
† A joint appointment with another department.

Programs of study are offered in the areas of applied mechanics, computer science, mechanical engineering and materials science, chemical and environmental engineering, electrical engineering, and biomedical engineering. All programs are under the School of Engineering & Applied Science.

BIOMEDICAL ENGINEERING

Fields of Study

Biological and medical devices, biological signals and sensors, biomaterials, biophotonics, cellular biomechanics, computational biomechanics, computational medicine, computer vision, digital image analysis and processing, drug delivery, energy metabolism, experimental biomechanics, gene delivery, gene therapy, image analysis, Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), modeling in mechanobiology, molecular biomechanics, nanomedicine, network analysis, neuroreceptors, physics of image formation (MRI, optics, ultrasound, nuclear medicine, and X-ray), physiology and human factors engineering, Positron Emission Tomography (PET), regenerative medicine, signaling pathways, Single Photon Emission Computed Tomography (SPECT), systems biology, systems medicine, tissue engineering, tracer kinetic modeling, and vascular biology.
CHEMICAL & ENVIRONMENTAL ENGINEERING

Fields of Study
Fields include nanomaterials, soft matter, interfacial phenomena, energy, water and air quality, and sustainability.

COMPUTER SCIENCE

Fields of Study
Algorithms and computational complexity, artificial intelligence, data networking, databases, graphics, machine learning, programming languages, robotics, scientific computing, security and privacy, and systems.

ELECTRICAL ENGINEERING

Fields of Study
Fields include biomedical sensory systems, communications and signal processing, neural networks, control systems, wireless networks, sensor networks, microelectromechanical and nanomechanical systems (MEMS and NEMS), optoelectronic materials and devices, semiconductor materials and devices, quantum and nonlinear photonics, quantum materials and engineering, computer engineering, computer architecture, hardware security, and VLSI design and testing.

MECHANICAL ENGINEERING & MATERIALS SCIENCE

Fields of Study
- **Fluids and thermal sciences**
 - Electrospray theory and characterization; electrical propulsion applications; combustion and flames; computational methods for fluid dynamics and reacting flows; and laser diagnostics of reacting and nonreacting flows.
- **Soft matter/complex fluids**
 - Jamming and slow dynamics in gels, glasses, and granular materials; mechanical properties of soft and biological materials; and structure and dynamics of proteins and other macromolecules. Several faculty in Mechanical Engineering are also affiliated with the Integrated Graduate Program in Physical and Engineering Biology (http://peb.yale.edu).
- **Materials science**
 - Studies of thin films; nanoscale effects on electronic, optical, and emergent properties of two-dimensional layered materials; amorphous metals and nanomaterials including nanocomposites; characterization of crystallization and other phase transformations; nanoimprinting; atomic-scale investigations of surface interactions and properties; classical and quantum nanomechanics; nanostructured energy applications; nanoparticle synthesis for energy applications; combinatorial materials science; in situ transmission electron and scanning probe microscopy; theoretical spectroscopy and computational materials science; and halide perovskites.
- **Robotics/mechatronics**
 - Machine and mechanism design; dynamics and control; robotic grasping and manipulation; human-machine interface; rehabilitation robotics; haptics; soft robotics; flexible and stretchable electronics; soft material manufacturing; responsive material actuators; soft-bodied control; electromechanical energy conversion; biomechanics of human movement; mechanics of biological muscle; and human-powered vehicles.

INTEGRATED GRADUATE PROGRAM IN PHYSICAL AND ENGINEERING BIOLOGY (PEB)

Students applying to the Ph.D. program in Biomedical Engineering, Chemical & Environmental Engineering, and Mechanical Engineering & Materials Science may also apply to be part of the PEB program. See the description under Non-Degree-Granting Programs, Councils, and Research Institutes for course requirements, and http://peb.yale.edu for more information about the benefits of this program and application instructions.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE

The online publication *Qualification Procedure for the Ph.D. Degree in Engineering & Applied Science* describes in detail all requirements in Biomedical Engineering, Chemical & Environmental Engineering, Electrical Engineering, and Mechanical Engineering & Materials Science. The student is strongly encouraged to read it carefully; key requirements are briefly summarized below. See Computer Science's departmental entry in this bulletin for special requirements for the Ph.D. in Computer Science.

Students plan their course of study in consultation with faculty advisers (the student’s advisory committee). A minimum of ten term courses is required, to be completed in the first two years. Well-prepared students may petition for course waivers based on courses taken in a previous graduate degree program. Similarly, students may place out of certain ENAS courses via an examination prepared by the course instructor. Placing out of the course will not reduce the total number of required courses. Core courses, as identified by each department/program, should be taken in the first year unless otherwise noted by the department. With the permission of the departmental director of graduate studies (DGS), students may substitute more advanced courses that cover the same topics. No more than two courses can be Special Investigations, and at least two must be outside the area of the dissertation. All students must complete a one-term course, Responsible Conduct of Research, in the first year of study.

Each term, the faculty review the overall performance of the student and report their findings to the DGS who, in consultation with the associate dean, determines whether the student may continue toward the Ph.D. degree. By the end of the second term, it is expected that
a faculty member has agreed to accept the student as a research assistant. By December 5 of the third year, an area examination must be passed and a written prospectus submitted before dissertation research is begun. These events result in the student's admission to candidacy. Subsequently, the student will report orally each year to the full advisory committee on progress. When the research is nearing completion, but before the thesis writing has commenced, the full advisory committee will advise the student on the thesis plan. A final oral presentation of the dissertation research is required to be given during term time. There is no foreign language requirement.

Teaching experience is regarded as an integral part of the graduate training program at Yale University, and all Engineering graduate students are required to serve as a Teaching Fellow for up to two terms, typically during year two. Teaching duties normally involve assisting in laboratories or discussion sections and grading papers and are not expected to require more than ten hours per week. Students are not permitted to teach during the first year of study.

If a student was admitted to the program having earned a score of less than 26 on the Speaking Section of the Internet-based TOEFL, the student will be required to take an English as a Second Language (ESL) course each term at Yale until the Graduate School's Oral English Proficiency standard has been met. This must be achieved by the end of the third year in order for the student to remain in good standing.

CORE COURSE REQUIREMENTS FOR THE PH.D. DEGREE

Biomedical Engineering Physiological Systems (ENAS 550), Physical and Chemical Basis of Bioimaging and Biosensing (ENAS 510). One of these courses may be taken in the second year. In addition, there is a math requirement that must be met by taking Biomedical Data Analysis (ENAS 549), Mathematical Methods I (ENAS 500), or Advanced Engineering Mathematics (ENAS 505) in the first year.

Chemical & Environmental Engineering (Chemical track) Mathematical Methods I (ENAS 500), Classical and Statistical Thermodynamics (ENAS 521), Energy, Mass, and Momentum Processes (ENAS 603), Chemical Reaction Engineering (ENAS 602).

Chemical & Environmental Engineering (Environmental track) Biological Processes in Environmental Engineering (ENAS 641), Environmental Physicochemical Processes (ENAS 642), and either Environmental Organic Chemistry (ENAS 638) or Aquatic Chemistry (ENAS 649). In addition, there is a math requirement that must be met by taking one of the following courses in the first year: Mathematical Methods I (ENAS 500), Applied Spatial Statistics (ENV 781), Multivariate Data Analysis in the Environmental Sciences (ENV 788), Data Exploration and Analysis (S&DS 530), or Multivariate Statistical Methods for the Social Sciences (S&DS 563).

Computer Science See the departmental entry for Computer Science in this bulletin.

Electrical Engineering (Computer Engineering track) Competence must be demonstrated in at least two of the three research areas. At least two courses that cover two different areas are required. In the area of computer organization and architecture, the course options are Computer Architectures and Artificial Intelligence (ENAS 907) and Computer Organization and Architecture (ENAS 967). In the area of VLSI, the course options are Introduction to VLSI System Design (ENAS 875) and Silicon Compilation (ENAS 876). In the area of computer systems, the course options are Principles of Operating Systems (CPSC 523), Building Distributed Systems (CPSC 526), Computer Networks (CPSC 533), Topics on the Hardware/Software Interface (CPSC 635), and Cloud FPGA (ENAS 698).

Electrical Engineering (Microelectronics track) Two of the following four courses: Phototonics and Optical Electronics (ENAS 511), Advanced Electron Devices (ENAS 718), Solid State Physics I (ENAS 850), Semiconductor Silicon Devices and Technology (ENAS 986).

Electrical Engineering (System and Signals track) Linear Systems (ENAS 902), Stochastic Processes (ENAS 502).

Mechanical Engineering & Materials Science Students must demonstrate competence in one of four areas: Fluid and Thermal Sciences, Solid Matter/Complex Fluids, Materials Science, or Robotics/Mechatronics. As a minimum requirement, students must take at least one of the following courses in the first year of study: Intelligent Robotics (CPSC 572), Intelligent Robotics Laboratory (CPSC 573), Classical and Statistical Thermodynamics (ENAS 521), Biological Physics (ENAS 541), Neuromuscular Biomechanics (ENAS 559), Polymer Chemistry and Physics (ENAS 606), Synthesis of Nanomaterials (ENAS 615), Statistical Physics II (PHYS 628), Introduction to Nanomaterials and Nanotechnology (ENAS 703), Theoretical Fluid Dynamics (ENAS 704), Fundamentals of Combustion (ENAS 708), Solidification and Phase Transformations (ENAS 752), Introduction to Robot Analysis (ENAS 777), Advanced Robotic Mechanisms (ENAS 778), Forces on the Nanoscale (ENAS 787), Soft Condensed Matter Physics (ENAS 848), Solid State Physics I (ENAS 850), Solid State Physics II (ENAS 851), Linear Systems (ENAS 902; if not used to satisfy the math requirement), Systems and Control (ENAS 906), and Mechatronics Laboratory (ENAS 994). In addition, there is a math requirement that must be met by taking Mathematical Methods I (ENAS 500), Mathematical Methods of Physics (PHYS 506), or Linear Systems (ENAS 902), depending on the research area.

HONORS REQUIREMENT

Students must meet the Honors requirement in at least two term courses (excluding Special Investigations) by the end of the second term of full-time study. An extension of one term may be granted at the discretion of the DGS. An average grade of at least High Pass must be maintained through all courses that count toward the Ph.D.

MASTER’S DEGREES

M.Phil. See Degree Requirements under Policies and Regulations.

M.S. (en route to the Ph.D.) To qualify for the M.S., the student must pass eight term courses; no more than two may be Special Investigations. An average grade of at least High Pass is required, with at least one grade of Honors.
Terminal Master's Degree Program Students may also be admitted directly to a terminal master's degree program in Engineering & Applied Science. The requirements are the same as for the M.S. en route to the Ph.D., although there are no core course requirements for students in this program. This program is normally completed in one year, but a part-time program may be spread over as many as four years. Some courses are available in the evening, to suit the needs of students from local industry.

Joint Master's Degree Program (School of Engineering & Applied Science and School of the Environment) The joint master’s degree program offered by the School of the Environment (YSE) and the School of Engineering & Applied Science (SEAS) provides environmental engineers and environmental managers with the opportunity to develop knowledge and tools to address the complex relationship between technology and the environment. This joint-degree program will train graduate students to design and manage engineered and natural systems that address critical societal challenges, while considering the complex technical, economic, and sociopolitical systems relationships. Each joint program leads to the simultaneous award of two graduate professional degrees: either the Master of Environmental Management (M.E.M.) or the Master of Environmental Science (M.E.Sc.) from YSE, and a Master of Science (M.S.) from SEAS. Students can earn the two degrees concurrently in 2.5 years, less time than if they were pursued sequentially. Candidates spend the first year at YSE, the second year at SEAS, and their final term at YSE. Joint-degree students are guided in this process by advisers in both YSE and SEAS. Candidates must submit formal applications to both YSE and SEAS and be admitted separately to each School, i.e., each School makes its decision independently. It is highly recommended that students apply to and enter a joint-degree program from the outset, although it is possible to apply to the second program once matriculated at Yale. Prospective students to the joint-degree program apply to the YSE master’s degree through YSE (https://apply.environment.yale.edu/) and to the SEAS master’s degree in Chemical & Environmental Engineering through the Graduate School of Arts and Sciences (https://gsas.yale.edu/admissions/degree-program-application-process).

The following six courses are required of all joint-degree YSE/SEAS master’s students completing their M.S. in Environmental Engineering: ENAS 641, ENAS 642, ENAS 660, ENV 773, ENV 818, and either ENV 712 or ENV 724. Two additional Yale-wide technical electives approved by the DGS (or faculty in an equivalent role in Environmental Engineering) are required. These courses may be cross-listed with or administered by YSE with prior approval from the DGS. For the joint-degree requirements for completion of the M.E.M. or M.E.Sc. in YSE, see the bulletin of the Yale School of the Environment at https://bulletin.yale.edu.

Program materials are available upon request to the Office of Graduate Studies, School of Engineering & Applied Science, Yale University, PO Box 208292, New Haven CT 06520-8292; e-mail, engineering@yale.edu; website, http://seas.yale.edu.

COURSES

The list of courses may be slightly modified by the time term begins. Please visit https://courses.yale.edu for the most updated course listing.

ENAS 500b, Mathematical Methods I Paul Van Tassel
A beginning, graduate-level introduction to ordinary and partial differential equations, vector analysis, linear algebra, and complex functions. Laplace transform, series expansion, Fourier transform, and matrix methods are given particular attention. Applications to problems frequently encountered in engineering practice are stressed throughout.

ENAS 502b / S&DS 551b, Stochastic Processes Joseph Chang
Introduction to the study of random processes, including Markov chains, Markov random fields, martingales, random walks, Brownian motion, and diffusions. Techniques in probability such as coupling and large deviations. Applications chosen from image reconstruction, Bayesian statistics, finance, probabilistic analysis of algorithms, genetics, and evolution.

ENAS 508b, Responsible Conduct of Research Staff
Required of first-year students. Presentation and discussion of topics and best practices relevant to responsible conduct of research including academic fraud and misconduct, conflict of interest and conflict of commitment, data acquisition and human subjects, use and care of animals, publication practices and responsible authorship, mentor/trainee responsibilities and peer review, and collaborative science. 0 Course cr

ENAS 509b, Electronic Materials Jung Han
Survey and review of fundamental material issues pertinent to modern microelectronic and optoelectronic technology. Topics include band theory, electronic transport, surface kinetics, diffusion, defects in crystals, thin film elasticity, crystal growth, and heteroepitaxy.

ENAS 510a, Physical and Chemical Basis of Bioimaging and Biosensing Douglas Rothman, Fahmeed Hyder, and Richard Carson
Basic principles and technologies for imaging and sensing the chemical, electrical, and structural properties of living tissues and biological macromolecules. Topics include magnetic resonance spectroscopy, MRI, positron emission tomography, and molecular imaging with MRI and fluorescent probes.

ENAS 511a, Photonics and Optical Electronics Jung Han
A survey of the enabling components and devices that constitute modern optical communication systems. Focus on the physics and principles of each functional unit, its current technological status, design issues relevant to overall performance, and future directions.

ENAS 513a, Introduction to Analysis Peter Jones
Foundations of real analysis, including metric spaces and point set topology, infinite series, and function spaces.
ENAS 544b, Real Analysis Yair Minsky
The Lebesgue integral, Fourier series, applications to differential equations.

ENAS 517b / MB&B 517b / MCDB 517b / PHYS 517b, Methods and Logic in Interdisciplinary Research Corey O’Hern
This half-term PEB class is intended to introduce students to integrated approaches to research. Each week, the first of two sessions is student-led, while the second session is led by faculty with complementary expertise and discusses papers that use different approaches to the same topic (for example, physical and biological or experiment and theory). Counts as 0.5 credit toward graduate course requirements. ½ Course cr

ENAS 519b, Responsible Conduct of Research Staff
Required of first-year students in Chemical & Environmental Engineering, Electrical Engineering, and Mechanical Engineering & Materials Science. Presentation and discussion of topics and best practices relevant to responsible conduct of research including academic fraud and misconduct, conflict of interest and conflict of commitment, data acquisition and human subjects, use and care of animals, publication practices and responsible authorship, mentor/trainee responsibilities and peer review, and collaborative science. 0 Course cr

ENAS 521b, Classical and Statistical Thermodynamics
A unified approach to bulk-phase equilibrium thermodynamics, bulk-phase irreversible thermodynamics, and interfacial thermodynamics in the framework of classical thermodynamics, and an introduction to statistical thermodynamics. Both the activity coefficient and the equations of state are used in the description of bulk phases. Emphasis on classical thermodynamics of multicomponents, including concepts of stability and criticality, curvature effect, and gravity effect. The choice of Gibbs free energy function covers applications to a broad range of problems in chemical, environmental, biomedical, and petroleum engineering. The introduction includes theory of Gibbs canonical ensembles and the partition functions, fluctuations; Boltzmann statistics; Fermi-Dirac and Bose-Einstein statistics. Application to ideal monatomic and diatomic gases is covered.

ENAS 522a, Engineering and Biophysical Approaches to Cancer Michael Mak
This course examines the current understanding of cancer as a complex disease and the advanced engineering and biophysical methods developed to study and treat this disease. All treatment methods are covered. Basic quantitative and computational backgrounds are required. Prerequisites: BENG 249 or equivalent and MATH 120 or equivalent.

ENAS 534b, Biomaterials Anjelica Gonzalez
Introduction to materials, classes of materials from atomic structure to physical properties. Major classes of materials: metals, ceramics and glasses, and polymers, addressing their specific characteristics, properties, and biological applications. Throughout the presentation of the synthesis, characterization, and properties of the classes of materials, a connection is made to the selection of materials for use in specific biological applications by matching the material’s properties to those necessary for success in the application. Case studies address the successes and failures of particular materials from each of the classes in biological applications.

ENAS 535b / PATH 630b, Biomaterial-Tissue Interactions Themis Kyriakides
Study of the interactions between tissues and biomaterials, with an emphasis on the importance of molecular- and cellular-level events in dictating the performance and longevity of clinically relevant devices. Attention to specific areas such as biomaterials for tissue engineering and the importance of stem/progenitor cells, as well as biomaterial-mediated gene and drug delivery.

ENAS 541b / CB&B 523b / MB&B 523b / PHYS 523b, Biological Physics Benjamin Machta
The course has two aims: (1) to introduce students to the physics of biological systems and (2) to introduce students to the basics of scientific computing. The course focuses on studies of a broad range of biophysical phenomena including diffusion, polymer statistics, protein folding, macromolecular crowding, cell motion, and tissue development using computational tools and methods. Intensive tutorials are provided for MATLAB including basic syntax, arrays, for-loops, conditional statements, functions, plotting, and importing and exporting data.

ENAS 544a, Fundamentals of Medical Imaging Chi Liu
Review of basic engineering and physical principles of common medical imaging modalities including X-ray, CT, PET, SPECT, MRI, and echo modalities (ultrasound and optical coherence tomography). Additional focus on clinical applications and cutting-edge technology development.

ENAS 549b, Biomedical Data Analysis Richard Carson
The course focuses on the analysis of biological and medical data associated with applications of biomedical engineering. It provides basics of probability and statistics, and analytical approaches for determination of quantitative biological parameters from noisy, experimental data. Programming in MATLAB to achieve these goals is a major portion of the course. Applications include Michaelis-Menten enzyme kinetics, Hodgkin-Huxley, neuroreceptor assays, receptor occupancy, MR spectroscopy, PET neuroimaging, brain image segmentation and reconstruction, and molecular diffusion.

ENAS 550a / C&MP 550a / MCDB 550a / PHAR 550a, Physiological Systems Stuart Campbell and W. Mark Saltzman
The course develops a foundation in human physiology by examining the homeostasis of vital parameters within the body, and the biophysical properties of cells, tissues, and organs. Basic concepts in cell and membrane physiology are synthesized through exploring the function of skeletal, smooth, and cardiac muscle. The physical basis of blood flow, mechanisms of vascular exchange, cardiac performance, and regulation of overall circulatory function are discussed. Respiratory physiology explores the mechanics of ventilation, gas diffusion, and acid-base balance. Renal physiology examines the formation and composition of urine and the regulation of electrolyte, fluid, and acid-base balance. Organs of the digestive system are discussed from the perspective of substrate metabolism and energy
balance. Hormonal regulation is applied to metabolic control and to calcium, water, and electrolyte balance. The biology of nerve cells is addressed with emphasis on synaptic transmission and simple neuronal circuits within the central nervous system. The special senses are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics. Graduate students evaluate research findings through literature review and weekly meetings with the instructor.

ENAS 551b, Biotransport and Kinetics
Kathryn Miller-Jensen
Creation and critical analysis of models of biological transport and reaction processes. Topics include mass and heat transport, biochemical interactions and reactions, and thermodynamics. Examples from diverse applications, including drug delivery, biomedical imaging, and tissue engineering.

ENAS 553a, Immunoengineering
Tarek Fahmy
An advanced class that introduces immunology principles and methods to engineering students. The course focuses on biophysical principles and biomaterial applications in understanding and engineering immunity. The course is divided into three parts. The first part introduces the immune system: organs, cells, and molecules. The second part introduces biophysical characterization and quantitative modeling in understanding immune system interactions. The third part focuses on intervention, modulation, and techniques for studying the immune system with emphasis on applications of biomaterials for intervention and diagnostics.

ENAS 553b, Vascular Mechanics
Jay Humphrey
This course is designed to enable students to apply methods of continuum biomechanics to study diverse vascular conditions and treatments, including aging, atherosclerosis, aneurysms, effects of hypertension, design of tissue-engineered constructs, and vein grafts from an engineering perspective. Emphasis is placed on ensuring that the mechanics is driven by advances in the vascular mechanobiology.

ENAS 556b, Molecular and Cellular Biomechanics
Michael Murrell
The basic mechanical principles at the molecular and cellular level that underlie the major physical behaviors of the cell, from cell division to cell migration. Basic cellular physiology, methodology for studying cell mechanical behaviors, models for understanding the cellular response under mechanical stimulation, and the mechanical impact on cell differentiation and proliferation.

ENAS 558a, Introduction to Biomechanics
Michael Murrell
An introduction to the biomechanics used in biosolid mechanics, biofluid mechanics, biothermomechanics, and biochemomechanics. Diverse aspects of biomedical engineering, from basic mechanobiology to characterization of materials behaviors and the design of medical devices and surgical interventions.

ENAS 561b / AMTH 765b / CBiB 562b / CBiB 562b / INP 562b / MB&B 562b / MCDB 562b / PHYS 562b, Modeling Biological Systems II
Joe Howard, Thierry Emonet, and Jing Yan
This course covers advanced topics in computational biology. How do cells compute, how do they count and tell time, how do they oscillate and generate spatial patterns? Topics include time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form; mechanics of cell shape and motion; spatially heterogeneous processes; diffusion. This year, the course spends roughly half its time on mechanical systems at the cellular and tissue level, and half on models of neurons and neural systems in computational neuroscience. Prerequisite: a 200-level biology course or permission of the instructor.

ENAS 567b, Systems Biology of Cell Signaling
Andre Levchenko
This course is designed for graduate and advanced undergraduate students is focused on systems biology approaches to the fundamental processes underlying the sensory capability of individual cells and cell-cell communication in health and disease. The course is designed to provide deep treatment of both the biological underpinnings and mathematical modeling of the complex events involved in signal transduction. As such, it can be attractive to students of biology, bioengineering, biophysics, computational biology, and applied math. The class is part of the planned larger track in systems biology, being one of its final, more specialized courses. In spite of this, each lecture has friendly introduction to the specific topic of interest, aiming to provide sufficient refreshment of the necessary knowledge. The topics have been selected to represent both cutting-edge directions in systems analysis of signaling processes and exciting settings to explore, making learning complex notions more enjoyable. Prerequisites: basic knowledge of biochemistry and cell biology, as well as programming experience and basic notions from probability theory and differential equations.

ENAS 568b, Topics in Immunoengineering
Tarek Fahmy
This course addresses the intersection of immunobiology with engineering and biophysics. It invokes engineering tools, such as biomaterials, solid-state devices, nanotechnology, biophysical chemistry, and chemical engineering, toward developing newer and effective solutions to cancer immunotherapy, autoimmunity therapy, vaccine design, transplantation, allergy, asthma, and infections. The central theme is that dysfunctional immunity is responsible for a wide range of disease states and that engineering tools and methods can forge a link between the basic science and clinically translatable solutions that will potentially be “modern cures” to disease. This course is a follow-up to ENAS 553 and focuses more on the clinical translation aspect as well as new understandings in immunology and how they can be translated to the clinic and eventually to the market. Prerequisites: ENAS 553, differential equations, and advanced calculus.

ENAS 569b, Single-Cell Biology, Technologies, and Analysis
Rong Fan
This course teaches the principles of single-cell heterogeneity in human health and disease as well as the cutting-edge wet-lab and computational techniques for single-cell analysis, with a particular focus on omics-level profiling and data analysis. Topics covered include single-cell-level morphometric analysis, genomic alteration analysis, epigenomic analysis, mRNA transcriptome sequencing, small RNA profiling, surface epitope, intracellular signaling protein and secreted protein analysis, metabolomics, multi-omics, and spatially resolved single-cell omics mapping. We also teach computational methods for quantification of cell types, states, and
differentiation trajectories using single-cell high-dimensional data. Finally, case studies are provided to show the power of single-cell analysis in therapeutic target discovery, biomarker research, clinical diagnostics, and personalized medicine. Prerequisite: physiological systems, molecular biology, or biochemistry.

ENAS 570b / C&MP 560b / MCDB 560b / PHAR 560b, Cellular and Molecular Physiology: Molecular Machines in Human Disease
Emile Boulpaep

The course focuses on understanding the processes that transfer molecules across membranes at the cellular, molecular, biophysical, and physiological levels. Students learn about the different classes of molecular machines that mediate membrane transport, generate electrical currents, or perform mechanical displacement. Emphasis is placed on the relationship between the molecular structures of membrane proteins and their individual functions. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases.

ENAS 575a / CPSC 575a, Computational Vision and Biological Perception
Steven Zucker

An overview of computational vision with a biological emphasis. Suitable as an introduction to biological perception for computer science and engineering students, as well as an introduction to computational vision for mathematics, psychology, and physiology students.

ENAS 576b / AMTH 667b / CPSC 576b, Advanced Computational Vision
Steven Zucker

Advanced view of vision from a mathematical, computational, and neurophysiological perspective. Emphasis on differential geometry, machine learning, visual psychophysics, and advanced neurophysiology. Topics include perceptual organization, shading, color, and texture.

ENAS 585b, Fundamentals of Neuroimaging
Douglas Rothman and Fahmeed Hyder

The neuroenergetic and neurochemical basis of several dominant neuroimaging methods, including fMRI. Topics range from technical aspects of different methods to interpretation of the neuroimaging results. Controversies and/or challenges for application of fMRI and related methods in medicine are identified.

ENAS 600a or b, Computer-Aided Engineering
Staff

Aspects of computer-aided design and manufacture (CAD/CAM). The computer’s role in the mechanical design and manufacturing process; commercial tools for two- and three-dimensional drafting and assembly modeling; finite-element analysis software for modeling mechanical, thermal, and fluid systems.

ENAS 602b, Chemical Reaction Engineering
Eric Altman

Applications of physical-chemical and chemical-engineering principles to the design of chemical process reactors. Ideal reactors treated in detail in the first half of the course, practical homogeneous and catalytic reactors in the second.

ENAS 603a, Energy, Mass, and Momentum Processes
Amir Haj-Akbari

Application of continuum mechanics approach to the understanding and prediction of fluid flow systems that may be chemically reactive, turbulent, or multiphase.

ENAS 606b, Polymer Chemistry and Physics
Mingjiang Zhong

A graduate-level introduction to the physics and physical chemistry of macromolecules. This course covers the static and dynamic properties of polymers in solution, melt and surface adsorbed states and their relevance in industrial polymer processing, nanotechnology, materials science, and biophysics. Starting from basic considerations of polymerization mechanisms, control of chain architecture, and a survey of polymer morphology, the course also extensively addresses experimental methods for the study of structure and dynamics via various scattering (light, x-ray, neutron) and spectroscopic methods (rheology, photon correlation spectroscopy) as integral components of polymer physics.

ENAS 609a, Principles and Design of Energy Devices
Shu Hu

This is a comprehensive course with content at the intersection of nanoscale science, engineering, and technology, including application areas and nanofabrication technique. Topics include nanoscaled photovoltaic cells, hydrogen storage, fuel cells, and nanoelectronics; layer-by-layer assembly; organic-inorganic mesostructures; colloidal crystals, organic monolayers, proteins, DNA and abalone shells; synthesis of carbon nanotubes, nanowire, and nanocrystals; microelectromechanical systems (MEMs) devices; photolithography, electron beam lithography, and scanning probe lithography; lithium-based batteries; and nanomanufacturing (roll to roll, nanoimprint lithography, inkjet printing).

ENAS 615a, Synthesis of Nanomaterials
Lisa Pfefferle

This course focuses on the synthesis and engineering of nanomaterials. We also introduce different types of nanomaterials, unique properties at the nanoscale, measurement, and important applications of nanomaterials (including biomedical, electronic, and energy applications). Synthesis methods covered include gas phase and high vacuum techniques (CVD, MOCVD) as well as wet chemistry techniques such as reduction of metal salts, sonochemistry, and sol gel methods. Taking sample applications, we discuss the properties necessary for each, and how to control these properties through synthesis control, such as by using templating methods.

ENAS 638a, Environmental Organic Chemistry
John Fortner

This course examines the major physical and chemical attributes and processes affecting the behavior of organic compounds in environmental systems, including volatilization, sorption/attachment, diffusion, and reactions. Emphasis is on anthropogenic hydrophobic organic compounds (e.g., TCE, PCBs, DDT) and less hydrophobic emerging contaminants of concern (e.g.,
pharmaceuticals, explosives, etc.). The course reviews basic concepts from physical chemistry and examines the relationships between chemical structure, properties, and environmental behavior of organic compounds. Physical and chemical processes important to the fate, treatment, and transformation of specific organic compounds are addressed, including solubility, volatilization, partitioning, sorption/attachment, bioaccumulation, and bulk environmental transformation pathways. Equilibrium and kinetic models based on these principles are used to predict the fate and transport of organic contaminants in the environment.

ENAS 641a, Biological Processes in Environmental Engineering Jordan Peccia
Fundamental aspects of microbiology and biochemistry, including stoichiometry, kinetics, and energetics of biochemical reactions, microbial growth, and microbial ecology, as they pertain to biological processes for the transformation of environmental contaminants; principles for analysis and design of aerobic and anaerobic processes, including suspended- and attached-growth systems, for treatment of conventional and hazardous pollutants in municipal and industrial wastewaters and in groundwater.

ENAS 642b, Environmental Physicochemical Processes Menachem Elimelech
Fundamental and applied concepts of physical and chemical (“physicochemical”) processes relevant to water quality control. Topics include chemical reaction engineering, overview of water and wastewater treatment plants, colloid chemistry for solid-liquid separation processes, physical and chemical aspects of coagulation, coagulation in natural waters, filtration in engineered and natural systems, adsorption, membrane processes, disinfection and oxidation, disinfection by-products.

ENAS 648a, Environmental Transport Processes Menachem Elimelech
Analysis of transport phenomena governing the fate of chemical and biological contaminants in environmental systems. Emphasis on quantifying contaminant transport rates and distributions in natural and engineered environments. Topics include distribution of chemicals between phases; diffusive and convective transport; interfacial mass transfer; contaminant transport in groundwater, lakes, and rivers; analysis of transport phenomena involving particulate and microbial contaminants.

ENAS 660b, Green Engineering and Sustainability Julie Zimmerman
This hands-on course highlights the key approaches to advancing sustainability through engineering design. The class begins with discussions on sustainability, metrics, general design processes, and challenges to sustainability. The current approach to design, manufacturing, and disposal is discussed in the context of examples and case studies from various sectors. This provides a basis for what and how to consider when designing products, processes, and systems to contribute to furthering sustainability. The fundamental engineering design topics to be addressed include toxicity and benign alternatives, pollution prevention and source reduction, separations and disassembly, material and energy efficiencies and flows, systems analysis, biomimicry, and life cycle design, management, and analysis. Students tackle current engineering and product design challenges in a series of class exercises and a final design project.

ENAS 673b, Air Quality and Energy Drew Gentner
The production and use of energy are among the most important sources of air pollution worldwide. It is impossible to effectively address the impacts and regulation of air quality without understanding the impacts and behavior of emissions from energy sources. Through an assessment of emissions and physical/chemical processes, the course explores advanced topics (at the graduate level) on the behavior of pollutants from energy systems in the atmosphere. Topics include traditional and emerging energy technology, climate change, atmospheric aerosols, tropospheric ozone, as well as transport/modeling/mitigation.

ENAS 703a, Introduction to Nanomaterials and Nanotechnology Judy Cha
Survey of nanomaterial synthesis methods and current nanotechnologies. Approaches to synthesizing nanomaterials; characterization techniques; device applications that involve nanoscale effects.

ENAS 718b, Advanced Electron Devices Mark Reed
The science and technology of semiconductor electron devices. Topics include compound semiconductor material properties and growth techniques; heterojunction, quantum well, and superlattice devices; quantum transport; graphene and other 2-D material systems.

ENAS 723b / APHY 725b, Advanced Synchrotron Techniques and Electron Spectroscopy of Materials Charles Ahn
This course provides descriptions of advanced concepts in synchrotron X-ray and electron-based methodologies for studies of a wide range of materials at atomic and nano-scales. Topics include X-ray and electron interactions with matter, X-ray scattering and diffraction, X-ray spectroscopy and inelastic methods, time-resolved applications, X-ray imaging and microscopy, photo-electron spectroscopy, electron microscopy and spectroscopy, among others. Emphasis is on applying the fundamental knowledge of these advanced methodologies to real-world materials studies in a variety of scientific disciplines.

ENAS 747a, Applied Numerical Methods for Algebraic Systems, Eigensystems, and Function Approximation Beth Anne Bennett
The derivation, analysis, and implementation of various numerical methods. Topics include root-finding methods, numerical solution of systems of linear and nonlinear equations, eigenvalue/eigenvector approximation, polynomial-based interpolation, and numerical integration. Additional topics such as computational cost, error analysis, and convergence are studied in several contexts throughout the course.

ENAS 758b, Multiscale Models of Biomechanical Systems Stuart Campbell
Current methods for simulating biomechanical function across biological scales, from molecules to organ systems of the human body. Theory and numerical methods; case studies exploring recent advances in multiscale biomechanical modeling. Includes computer laboratory sessions that introduce relevant software packages.
ENAS 770b, Soft Robot Modeling and Control Rebecca Kramer-Bottiglio
This course covers topics including robot kinematics, elastic materials models, conductive composites, responsive material actuators, simple controllers, and physics-based soft robot simulation. The course also includes a project. Projects must involve theoretical modeling, design implementation, and/or experimental testing of a scientific hypothesis, and must have a mechanics and/or materials component. Prerequisites: prior course work in solid mechanics and familiarity with MATLAB.

ENAS 787b, Forces on the Nanoscale Udo Schwarz
Modern materials science often exploits the fact that atoms located at surfaces or in thin layers behave differently from bulk atoms to achieve new or greatly altered material properties. The course provides an in-depth discussion of intermolecular and surface forces, which determine the mechanical and chemical properties of surfaces. In the first part, we discuss the fundamental principles and concepts of forces between atoms and molecules. Part two generalizes these concepts to surface forces. Part three then gives a variety of examples. The course is of interest to students studying thin-film growth, surface coatings, mechanical and chemical properties of surfaces, soft matter including biomembranes, and colloidal suspensions.

ENAS 805b, Biotechnology and the Developing World Angelica Gonzalez
This interactive course explores how advances in biotechnology enhance the quality of life in the developing world. Implementing relevant technologies in developing countries is not without important challenges; technical, practical, social, and ethical aspects of the growth of biotechnology are explored. Readings from Biomedical Engineering for Global Health as well as recent primary literature; case studies, in-class exercises, and current events presentations. Guest lecturers include biotechnology researchers, public policy ethicists, preventive research physicians, public-private partnership specialists, and engineers currently implementing health-related technologies in developing countries.

ENAS 825a, Physics of Magnetic Resonance Spectroscopy in Vivo Graeme Mason and Robin de Graaf
The physics of chemical measurements performed with nuclear magnetic resonance spectroscopy, with special emphasis on applications to measurement studies in living tissue. Concepts that are common to magnetic resonance imaging are introduced. Topics include safety, equipment design, techniques of spectroscopic data analysis, and metabolic modeling of dynamic spectroscopic measurements.

ENAS 850a, Solid State Physics I Staff
A two-term sequence (with ENAS 851) covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structures, phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonance, phase transitions, and superconductivity.

ENAS 851b, Solid State Physics II Vidvuds Ozolins
A two-term sequence (with ENAS 850) covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structures, phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonance, phase transitions, and superconductivity.

ENAS 866a, Emerging CMOS Technology and Beyond Tso-Ping Ma
This seminar-style course introduces students to various contemporary topics in emerging CMOS science and technology. Possible topics include post-Moore’s law alternatives, artificial intelligence, neuromorphic computing, quantum computers, emerging memories, and other topics of interest to students. In addition to the instructor, students hear from and interact with world-renowned guest lecturers during and after regular class hours.

ENAS 870b, Introduction to VLSI System Design Richard Lethin
Chip design. Provides background in integrated devices, circuits, and digital subsystems needed for design and implementation of silicon logic chips. Historical context, scaling, technology projections, physical limits. CMOS fabrication overview, complementary logical circuits, design methodology, computer-aided design techniques, timing, and area estimation. Case studies of recent research and commercial chips. Objectives of the course are (1) to give students the ability to complete the course project (design of a digital CMOS subsystem chip through layout), and (2) to understand the directions that future chip technologies may take. Selected projects are fabricated and packaged for testing by students. Prerequisite: circuits at the level of introductory physics and computer programming.

ENAS 900b, Distributed Computation and Decision Making A Stephen Morse
Within the field of network science there has long been interest in distributed computation and distributed decision-making problems of many types. Among these are consensus and flocking problems, the multi-robot rendezvous problem, distributed averaging, distributed solutions to linear algebraic equations, social networking problems, localization of sensors in a multisensor network, and the distributed management of robotic formations. The aim of this course is to explain what these problems are and to discuss their solutions. Related concepts from spectral graph theory, rigid graph theory, non-homogeneous Markov chain theory, stability theory, and linear system theory are covered. Prerequisite: although most of the mathematics needed are covered in the lectures, students taking this course should have a working understanding of basic linear algebra.

ENAS 902a, Linear Systems A Stephen Morse
Background linear algebra; finite-dimensional, linear-continuous, and discrete dynamical systems; state equations, pulse and impulse response matrices, weighting patterns, transfer matrices. Stability, Lyapunov’s equation, controllability, observability, system reduction, minimal realizations, equivalent systems, McMillan degree, Markov matrices. Recommended for all students interested in feedback control, signal and image processing, robotics, econometrics, and social and biological networks.
ENAS 905a, Applied Digital Signal Process J Rimas Vaisnys

ENAS 912a, Biomedical Image Processing and Analysis James Duncan and Lawrence Staib
This course is an introduction to biomedical image processing and analysis, covering image processing basics and techniques for image enhancement, feature extraction, compression, segmentation, registration, and motion analysis including traditional and machine-learning techniques. Students learn the fundamentals behind image processing and analysis methods and algorithms with an emphasis on biomedical applications.

ENAS 938b, Neural Networks for Pattern Recognition, Identification, and Control Kumpati Narendra
Following a brief introduction to the theory of artificial neural networks and linear adaptive control, the course discusses in detail adaptive identification and control problems in nonlinear dynamical systems. Students work on individual projects, and the final grade depends on their performance in the midterm, problem sets, and the final project report. Prerequisite: ENAS 936a or permission of the instructor.

ENAS 940a, Neural Networks and Learning Systems Priya Panda
Neural networks (NNs) have become all-pervasive, giving us self-driving cars, Siri voice assistant, Alexa, and many more. While deep NNs deliver state-of-the-art accuracy on many artificial intelligence tasks, it comes at the cost of high computational complexity. Accordingly, designing efficient hardware architectures for deep neural networks is an important step toward enabling the wide deployment of NNs, particularly in low-power computing platforms, such as mobiles, embedded Internet of Things (IoT), and drones. This course aims to provide a thorough overview of deep learning techniques, while highlighting the key trends and advances toward efficient processing of deep learning in hardware systems, considering algorithm-hardware co-design techniques. Prerequisite: prior exposure to probability/linear algebra/matrix operations at basic undergraduate level is expected. Prior knowledge of programming language like Python NumPy is useful. Familiarity with digital system design with basic understanding of logic, memory, and related design components is expected.

ENAS 951b / CPSC 556b, Wireless Technologies and the Internet of Things Wenjun Hu
Fundamental theory of wireless communications and its application explored against the backdrop of everyday wireless technologies such as WiFi and cellular networks. Channel fading, MIMO communication, space-time coding, opportunistic communication, OFDM and CDMA, and the evolution and improvement of technologies over time. Emphasis on the interplay between concepts and their implementation in real systems. The labs and homework assignments require Linux and MATLAB skills and simple statistical and matrix analysis (using built-in MATLAB functions).

ENAS 952a, Internet Engineering Leandros Tassiulas

ENAS 963b, Network Algorithms and Stochastic Optimization Leandros Tassiulas
This course focuses on resource allocation models as well as associated algorithms and design and optimization methodologies that capture the intricacies of complex networking systems in communications computing as well as transportation, manufacturing, and energy systems. Max-weight scheduling, back-pressure routing, wireless opportunistic scheduling, time-varying topology network control, and energy-efficient management are sample topics to be considered, in addition to Lyapunov stability and optimization, stochastic ordering, and notions of fairness in network resource consumption.

ENAS 986b, Semiconductor Silicon Devices and Technology Tso-Ping Ma
Introduction to integrated circuit technology, theory of solid state devices, and principles of device design and fabrication. Laboratory involves the fabrication and analysis of semiconductor devices, including Ohmic contacts, Schottky diodes, p-n junctions, MOS capacitors, MOSFETS, and integrated circuits.

ENAS 990a or b, Special Investigations Staff
Faculty-supervised individual projects with emphasis on research, laboratory, or theory. Students must define the scope of the proposed project with the faculty member who has agreed to act as supervisor, and submit a brief abstract to the director of graduate studies for approval.

ENAS 991a / MB&B 591a / MCDB 591a / PHYS 991a, Integrated Workshop Corey O’Hern
This required course for students in the PEB graduate program involves a series of modules, co-taught by faculty, in which students from different academic backgrounds and research skills collaborate on projects at the interface of physics, engineering, and biology. The modules cover a broad range of PEB research areas and skills. The course starts with an introduction to MATLAB, which is used throughout the course for analysis, simulations, and modeling.