MATHEMATICS

10 Hillhouse Avenue, 203.432.7058
http://math.yale.edu
M.S., M.Phil., Ph.D.

Chair
Yair Minsky

Director of Graduate Studies
Alexander Goncharov [F]
Hee Oh [Sp]

Professors Richard Beals (Emeritus), Jeffrey Brock, Andrew Casson (Emeritus), Ronald Coifman, Igor Frenkel, Howard Garland (Emeritus), Alexander Goncharov, Roger Howe (Emeritus), Peter Jones, Gil Kalai (Adjunct), Ivan Losev, Alexander Lubotzky (Adjunct), Gregory Margulis, Yair Minsky, Vincent Moncrief (Physics), Hee Oh, Sam Payne, Nicholas Read (Physics; Applied Physics), Vladimir Rokhlin (Computer Science), Wilhelm Schlag, George Seligman (Emeritus), Alexander Goncharov, Roger Howe (Emeritus), Peter Jones, Gil Kalai (Adjunct), Ivan Losev, Alexander Lubotzky (Adjunct), Gregory Margulis, Yair Minsky, Vincent Moncrief (Physics), Hee Oh, Sam Payne, Nicholas Read (Physics; Applied Physics), Vladimir Rokhlin (Computer Science), Wilhelm Schlag, George Seligman (Emeritus), Daniel Spielman (Computer Science), Van Vu, John Wetlaufer (Geology & Geophysics; Physics), Gregg Zuckerman

Associate Professor Yifeng Liu

Assistant Professor Stefan Steinerberger

FIELDS OF STUDY
Fields include real analysis, complex analysis, functional analysis, classical and modern harmonic analysis; linear and nonlinear partial differential equations; dynamical systems and ergodic theory; geometric analysis; kleinian groups, low dimensional topology and geometry; differential geometry; finite and infinite groups; geometric group theory; finite and infinite dimensional Lie algebras, Lie groups, and discrete subgroups; representation theory; automorphic forms, L-functions; algebraic number theory and algebraic geometry; mathematical physics, relativity; numerical analysis; combinatorics and discrete mathematics.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE
All students are required to: (1) complete eight term courses at the graduate level, at least two with Honors grades; (2) pass qualifying examinations on their general mathematical knowledge; (3) submit a dissertation prospectus; (4) participate in the instruction of undergraduates; (5) be in residence for at least three years; and (6) complete a dissertation that clearly advances understanding of the subject it considers. The normal time for completion of the Ph.D. program is five years. Requirement (1) should be completed by the end of the second year. A sequence of three qualifying examinations (algebra and number theory, real and complex analysis, topology) is offered each term, at intervals of about one month. All qualifying examinations must be taken by the end of the third term. The thesis is expected to be independent work, done under the guidance of an adviser. This adviser should be contacted not long after the student passes the qualifying examinations. A student is admitted to candidacy after completing requirements (1) - (5) and obtaining an adviser.

In addition to all other requirements, students must successfully complete MATH 991, Ethical Conduct of Research, prior to the end of their first year of study. This requirement must be met prior to registering for a second year of study.

HONORS REQUIREMENT
Students must meet the Graduate School's Honors requirement by the end of the fourth term of full-time study.

TEACHING
Teaching experience is integral to graduate education at Yale. Therefore, most Mathematics students are required to assist in teaching during five terms. Students in years one and two serve as tutors and graders in undergraduate mathematics courses during one term per year. The department also offers a required teaching practicum in year two. In years three through five, students normally teach one section of calculus or its equivalent during one term per year. Students receiving external fellowships may petition for a waiver of teaching while receiving external funding in place of University funding, but they are still required to teach one section of calculus or its equivalent for a minimum of two terms over the course of their program.

MASTER'S DEGREES

M.Phil. In addition to the Graduate School's Degree Requirements (see under Policies and Regulations), a student must undertake a reading program of at least two terms' duration in a specific significant area of mathematics under the supervision of a faculty adviser and demonstrate command of the material studied during the reading period at a level sufficient for teaching and research.

M.S. (EN ROUTE TO THE PH.D.) A student must complete six term courses with at least one Honors grade, perform adequately on the general qualifying examination, and be in residence at least one year. The M.S. degree is conferred only en route to the Ph.D.; there is no separate master’s program in Mathematics.
COURSES

MATH 500a, Modern Algebra I Staff
A survey of algebraic constructions and theories at a sophisticated level. Topics include categorical language, free groups and other free objects in categories, general theory of rings and modules, artinian rings, and introduction to homological algebra.

MATH 520a, Measure Theory and Integration Staff
Construction and limit theorems for measures and integrals on general spaces; product measures; Lp spaces; integral representation of linear functionals.

MATH 544a, Introduction to Algebraic Topology Yair Minsky
A one-term graduate introductory course in algebraic topology. We discuss algebraic and combinatorial tools used by topologists to encode information about topological spaces. Broadly speaking, we study the fundamental group of a space, its homology, and its cohomology. While focusing on the basic properties of these invariants, methods of computation, and many examples, we also see applications toward proving classical results. These include the Brouwer fixed-point theorem, the Jordan curve theorem, Poincaré duality, and others. The main text is Allen Hatcher’s *Algebraic Topology*, which is available for free on his website.

MATH 545b, Introduction to Algebraic Topology II Staff

MATH 666a, Classical Statistical Thermodynamics John Wettlaufer
Classical thermodynamics is derived from statistical thermodynamics. Using the multi-particle nature of physical systems, we derive ergodicity, the central limit theorem, and the elemental description of the second law of thermodynamics. We then develop kinetics, transport theory, and reciprocity from the linear thermodynamics of irreversible processes. Topics of focus include Onsager reciprocal relations, the Fokker-Planck equation, stability in the sense of Lyapunov, and time invariance symmetry. We explore phenomena that are of direct relevance to astrophysical and geophysical settings. No quantum mechanics is necessary as a prerequisite.