MOLECULAR, CELLULAR, AND DEVELOPMENTAL BIOLOGY

Yale Science Building, 203.432.3538
http://mcdb.yale.edu
M.S., Ph.D.
Chair
Vivian Irish

Director of Graduate Studies
Farren Isaacs

Associate Professors Murat Acar, Damon Clark, Joshua Gendron, Megan King,* Farren Isaacs, Kathryn Miller-Jensen,* Weimin Zhong

Assistant Professors Shirin Bahmanyar, David Breslow, Nadya Dimitrova, Stavroula Hatzios, Yannick Jacob, Sigrid Nachtergaele, Josien van Wolfswinkel, Jing Yan

Lecturers Alexia Belperron,* Surjit Chandhoke,* Iain Dawson, Seth Guller,* Amaleah Hartman, Ronit Kaufman, Samantha Lin, Maria Moreno, Kenneth Nelson, Aruna Pawashe,* Joseph Wolenski

* A secondary appointment with primary affiliation in another department or school.

FIELDS OF STUDY

Research in genetics and molecular biology encompasses studies of non-coding RNAs, genome engineering, genome organization and regulation, gene dosage, aging, bacterial chemotaxis, and oncogenes. Research topics in cellular and developmental biology include structure and dynamics of the cell cytoskeleton, molecular motors, chemical biology, the nuclear envelope, IncRNAs, regeneration, developmental biomechanics, vertebral column development, neural and epidermal stem cells, and systems developmental biology. Research in neurobiology focuses on growth cone motility, neural differentiation, synaptogenesis, visual perception, olfaction, and the formation of topographic maps. A Special Program in Plant Sciences provides research and training in the molecular genetics of flowering, epigenetics, the physiology of hormone action, pathogen defense systems, sex determination, and the circadian clock. Because of the breadth of the department, students are provided with unique training and research opportunities for interdisciplinary studies.

To enter the Ph.D. program, students apply to the Molecular Cell Biology, Genetics, and Development (MCGD) track; the Biochemistry, Quantitative Biology, Biophysics, and Structural Biology (BQBS) track; or the Plant Molecular Biology (PMB) track within the interdepartmental graduate program in Biological and Biomedical Sciences (BBS), https://medicine.yale.edu/bbs.

INTEGRATED GRADUATE PROGRAM IN PHYSICAL AND ENGINEERING BIOLOGY (PEB)

Students applying to the MCGD or BQBS track of the Biological and Biomedical Sciences program may simultaneously apply to be part of the PEB program. See the description under Non-Degree-Granting Programs, Councils, and Research Institutes for course requirements, and http://peb.yale.edu for more information about the benefits of this program and application instructions.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE

Each student is expected to take at least three courses, in addition to MCDB 900/MCDB 901, Research Skills and Ethics I and II. With the help of a faculty committee, each student will plan a specific program that includes appropriate courses, seminars, laboratory rotations, and independent reading fitted to individual needs and career goals. There is no foreign language requirement. At the beginning of the third term of study, the student meets with a faculty committee to decide on a preliminary topic for dissertation work and to define the research areas in which the student is expected to demonstrate competence. By the end of the fall term of the second year, each student prepares a dissertation prospectus outlining the research proposed for the Ph.D. The student is admitted to candidacy for the Ph.D. when (1) the prospectus is accepted by a dissertation committee of faculty members, (2) the committee is satisfied that the student has demonstrated competence in the areas necessary to conduct the proposed work, and (3) the other requirements indicated above are fulfilled. The student should complete the requirements for admission to candidacy by the end of the fall term of the second year and no later than the end of the second year of study. Following admission to candidacy, students are required to meet with their thesis advisory committee at least once a year. The remaining requirements include completion of the dissertation research, presentation and defense of the dissertation, and submission of acceptable copies of the dissertation to the Graduate School and to the Marx Science and Social Science Library. All students are required to teach in two one-term (TF-10 level) courses during their Ph.D. study, but not during the first year of graduate study. Students who require additional support from the Graduate School must teach additional terms, if needed, after they have fulfilled the academic teaching requirement. Requirements for M.D./Ph.D. students are the same as for Ph.D. students, except that a single term of teaching is required. During their first year of study, students must successfully complete
systems in computational neuroscience. Prerequisite: a 200-level biology course or permission of the instructor.

The course spends roughly half its time on mechanical systems at the cellular and tissue level, and half on models of neurons and neural oscillation and spatial patterns. Topics include time-dependent dynamics in regulatory, signal-transduction, and neuronal systems. Tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics.

The course focuses on understanding the processes that transfer molecules across membranes at the cellular, molecular, biophysical, and physiological levels. Students learn about the different classes of molecular machines that mediate membrane transport, generate electrical currents, or perform mechanical displacement. Emphasis is placed on the relationship between the molecular structures of membrane proteins and their individual functions. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases.

This course covers advanced topics in computational biology. How do cells compute, how do they count and tell time, how do they oscillate and generate spatial patterns? Topics include time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form; mechanics of cell shape and motion; spatially heterogeneous processes; diffusion. This year, the course spends roughly half its time on mechanical systems at the cellular and tissue level, and half on models of neurons and neural systems in computational neuroscience. Prerequisite: a 200-level biology course or permission of the instructor.
MCDB 570b, Biotechnology Craig Crews, Ronald Breaker, Joseph Wolenski, F Kenneth Nelson, Farren Isaacs, and Yannick Jacob
The principles and applications of cellular, molecular, and chemical techniques that advance biotechnology. Topics include the most recent tools and strategies used by government agencies, industrial labs, and academic research to adapt biological and chemical compounds as medical treatments, as industrial agents, or for the further study of biological systems.

MCDB 591a / ENAS 991a / MB&B 591a / PHYS 991a, Integrated Workshop Corey O’Hern
This required course for students in the PEB graduate program involves a series of modules, co-taught by faculty, in which students from different academic backgrounds and research skills collaborate on projects at the interface of physics, engineering, and biology. The modules cover a broad range of PEB research areas and skills. The course starts with an introduction to MATLAB, which is used throughout the course for analysis, simulations, and modeling.

MCDB 595a and MCDB 596b, Intensive Research in MCDB for B.S./M.S. Candidates Douglas Kankel
A four-credit, yearlong course (two credits each term) that is similar to MCDB 495/496 and is taken during the senior year. During this course, students give an oral presentation describing their work. At the end of the course, students are expected to present their work to the department in the form of a poster presentation. In addition, students are expected to give an oral thesis defense, followed by a comprehensive examination of the thesis conducted by the thesis committee. Upon successful completion of this examination, as well as other requirements, the student is awarded the combined B.S./M.S. degree. Required of students in the joint B.S./M.S. program with Yale College. 2 Course cr per term

MCDB 602a / C BIO 602a / MB&B 602a, Molecular Cell Biology Thomas Melia, Michael Caplan, Thomas Pollard, Peter Takizawa, James Rothman, Valerie Horsley, Megan King, Patrick Lusk, Martin Schwartz, Christopher Burd, Josien van Wolfswinkel, and David Breslow
A comprehensive introduction to the molecular and mechanistic aspects of cell biology for graduate students in all programs. Emphasizes fundamental issues of cellular organization, regulation, biogenesis, and function at the molecular level. Prerequisites: none, but some knowledge of basic cell biology and biochemistry is assumed. Students who have not taken courses in these areas can prepare by reading relevant sections in basic molecular cell biology texts. We recommend Pollard et al., Cell Biology (3rd ed., 2016), Alberts et al., Molecular Biology of the Cell (6th ed., 2014), or Lodish et al., Molecular Cell Biology (8th edition, 2016).

MCDB 603a / C BIO 603a, Seminar in Molecular Cell Biology Megan King, Michael Caplan, Thomas Pollard, Peter Takizawa, James Rothman, Valerie Horsley, Thomas Melia, Patrick Lusk, Martin Schwartz, Christopher Burd, and David Breslow
A graduate-level seminar in modern cell biology. The class is devoted to the reading and critical evaluation of classical and current papers. The topics are coordinated with the CBIO 602 lecture schedule. Thus, concurrent enrollment in CBIO 602 is required.

MCDB 625a / GENE 625a / MB&B 625a, Basic Concepts of Genetic Analysis Jun Lu
The universal principles of genetic analysis in eukaryotes are discussed in lectures. Students also read a small selection of primary papers illustrating the very best of genetic analysis and dissect them in detail in the discussion sections. While other Yale graduate molecular genetics courses emphasize molecular biology, this course focuses on the concepts and logic underlying modern genetic analysis.

MCDB 650a, Epigenetics Yannick Jacob, Nadya Dimitrova, and Josien van Wolfswinkel
Study of epigenetic states and the various mechanisms of epigenetic regulation, including histone modification, DNA methylation, nuclear organization, and regulation by noncoding RNAs. Detailed critique of papers from primary literature and discussion of novel technologies, with specific attention to the role of epigenetics in development and its impact on human health. Prerequisite: permission of the instructor.

MCDB 670b, Advanced Seminar in Biochemistry and Genetics Ronald Breaker, Anna Marie Pyle, and Josien van Wolfswinkel
This seminar is designed to expand students’ abilities to critically read and evaluate the primary scientific literature relevant to some of the most active areas of biochemical and genetic research. Special emphasis is placed on topics that deal with recent discoveries in nucleic acids, such as catalytic RNA and DNA, functions of noncoding RNA, gene regulation by RNA, and genomic processing and instability. Students read assigned papers in advance. Discussion focuses on experimental design used by the authors, results of the experiments, and conclusions drawn by the authors.

MCDB 677b / GENE 777b, Mechanisms of Development Zhaoxia Sun
An advanced course on mechanisms of animal development focusing on the genetic specification of cell organization and identity during embryogenesis and somatic differentiation. The use of evolutionarily conserved signaling pathways to carry out developmental decisions in a range of animals is highlighted. Course work includes student participation in critical analysis of primary literature and a research proposal term paper.

MCDB 720a / INP 720a, Neurobiology Haig Keshishian and Paul Forscher
Examination of the excitability of the nerve cell membrane as a starting point for the study of molecular, cellular, and intracellular mechanisms underlying the generation and control of behavior.

MCDB 743b / GENE 743b / MB&B 743b, Advanced Eukaryotic Molecular Biology Mark Hochstrasser, Matthew Simon, Franziska Bleichert, and Wendy Gilbert
Selected topics in transcriptional control, regulation of chromatin structure, mRNA processing, mRNA stability, RNA interference, translation, protein degradation, DNA replication, DNA repair, site-specific DNA recombination, somatic hypermutation. Prerequisite: biochemistry or permission of the instructor.
Biomedical data science encompasses the analysis of gene sequences, macromolecular structures, and functional genomics data on a large scale. It represents a major practical application for modern techniques in data mining and simulation. Specific topics to be covered include sequence alignment, large-scale processing, next-generation sequencing data, comparative genomics, phylogenetics, biological database design, geometric analysis of protein structure, molecular-dynamics simulation, biological networks, normalization of microarray data, mining of functional genomics data sets, and machine-learning approaches to data integration. Prerequisites: biochemistry and calculus, or permission of the instructor.

This course consists of a weekly seminar that covers ethics, writing, and research methods in cellular and molecular biology as well as student presentations ("rotation talks") of work completed in the first and second laboratory rotations.

The course allows students to hone their presentation skills through yearly presentation of their dissertation work. Two students each give thirty-minute presentations in each class session. Students are required to present every year beginning in their third year in the MCDB program. Each MCDB graduate student is expected to attend at least 80 percent of the class sessions. Two faculty members co-direct the course, attend the seminars, and provide feedback to the students.

Second laboratory rotation for Molecular Cell Biology, Genetics, and Development track students.

Second laboratory rotation for Molecular Cell Biology, Genetics, and Development track students.

By arrangement with faculty.