COMBINED PROGRAM IN THE BIOLOGICAL AND BIOMEDICAL SCIENCES (BBS)

55 College Street, 203.785.5663
https://medicine.yale.edu/bbs

Director
Anthony Koleske

FIELDS OF STUDY
The Yale Combined Program in the Biological and Biomedical Sciences (BBS) offers unprecedented access to Yale’s extensive array of bioscience resources, encompassing everything the University has to offer in one comprehensive, interdisciplinary graduate program. BBS has no boundaries, either departmental or geographical. Students therefore have access to courses, seminars, and faculty labs in every department. Moreover, students can participate in research activities anywhere—on the main University campus, West Campus, or the School of Medicine.

Within BBS there are approximately 350 participating faculty, several dozen courses, and a great many seminars from which to choose. BBS is currently divided into eight interest-based “tracks”:

- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology
- Computational Biology and Bioinformatics
- Immunology
- Microbiology
- Molecular Cell Biology, Genetics, and Development
- Molecular Medicine, Pharmacology, and Physiology
- Neuroscience
- Plant Molecular Biology

Students apply to and, upon matriculation, affiliate with one of these eight tracks. It is important to note that, regardless of a student’s home track, all courses, faculty, and research opportunities at the University remain available.

Year 1 Each track has a faculty director who helps first-year students select courses and find suitable lab rotations. Students typically take two to three courses per term and conduct two to four lab rotations over the course of the year.

Year 2 Just prior to the start of the second year, students select a thesis adviser in whose lab they will conduct their doctoral research. They also then leave their BBS track and formally join one of eleven Ph.D.-granting programs:

- Cell Biology
- Cellular and Molecular Physiology
- Computational Biology and Bioinformatics
- Experimental Pathology
- Genetics
- Immunobiology
- Interdepartmental Neuroscience Program
- Microbiology
- Molecular Biophysics and Biochemistry
- Molecular, Cellular, and Developmental Biology
- Pharmacology

Students in year 2 complete the course requirements for the graduate program they have joined, take a qualifying exam, act as teaching assistants in lecture or lab courses, and begin thesis research.

Year 3 and beyond Students focus primarily on thesis research, publishing their results, and presenting their work at scientific meetings.

The average time to degree is 5.5 years.

For the duration of their studies all students receive a stipend, full tuition, and health coverage. Financial support comes from Yale University Fellowships, National Institutes of Health (NIH) training grants, and grants from foundations and companies.

SPECIAL ADMISSIONS REQUIREMENTS
Entrance requirements to BBS are track-specific but include the following: GRE General Test scores; relevant GRE Subject Test scores (strongly recommended but not a strict requirement); undergraduate major in a relevant biological, chemical, or physical science; three letters of recommendation addressing the student’s academic performance and/or laboratory training; and TOEFL exam scores for students whose native language is not English. Track-specific requirements are listed below.
Biochemistry, Quantitative Biology, Biophysics, and Structural Biology

All applicants are expected to meet general BBS requirements for entrance. Successful applicants will have a firm foundation in the sciences. Desirable courses include biology; biochemistry; general, organic, and physical chemistry; physics; and math. A pertinent GRE Subject Test is strongly recommended.

Computational Biology and Bioinformatics

All applicants are expected to meet general BBS requirements for entrance. In addition, successful applicants will have a strong foundation in the basic sciences such as biology, chemistry, and mathematics. Training in computing/informatics is also essential and should include significant computer programming experience. The GRE Subject Test in Biology, Chemistry, or other relevant discipline is recommended. The MCAT is also accepted.

Immunology

All applicants are expected to meet general BBS requirements for entrance. In addition, successful applicants are expected to have a firm foundation in the biological and physical sciences. It is preferred that students have taken courses in biology, organic chemistry, biochemistry, genetics, cell biology, physics, and mathematics. Actual course requirements are not fixed, however, and students with outstanding records in any area of the biological sciences may qualify for admission. There are no specific grade requirements for prior course work, but a strong performance in basic science courses is of great importance for admission. In special cases the Medical College Admission Test (MCAT) may be substituted.

Microbiology

No additional requirements or recommendations.

Molecular Cell Biology, Genetics, and Development

In addition to general BBS requirements, the GRE Subject Test in Biology or Chemistry is recommended.

Molecular Medicine, Pharmacology, and Physiology

All applicants are expected to meet general BBS requirements for entrance. Successful applicants should have a strong background in the biological, chemical, and/or physical sciences. For example, an undergraduate major/degree in biology, biochemistry, physiology, genetics, chemistry, physics, mathematics, engineering, or computer science could be appropriate. Courses in biology, biochemistry, organic and physical chemistry, and mathematics through elementary calculus are strongly recommended.

Neuroscience

All applicants are expected to meet general BBS requirements for entrance. Successful applicants will have a firm foundation in the sciences. The Neuroscience track will accept the Medical College Admission Test (MCAT) in lieu of the Graduate Record Examination (GRE) General Test.

Plant Molecular Biology

All applicants are expected to meet general BBS requirements for entrance.

INTEGRATED GRADUATE PROGRAM IN PHYSICAL AND ENGINEERING BIOLOGY (PEB)

Students applying to the Computational Biology and Bioinformatics track, the Molecular Cell Biology, Genetics, and Development track, the Neuroscience track, or the Biochemistry, Quantitative Biology, Biophysics, and Structural Biology track of the BBS program may also apply to be part of the PEB program. See the description under Non-Degree-Granting Programs, Councils, and Research Institutes for course requirements, and https://peb.yale.edu for more information about the benefits of this program and application instructions.

MEDICAL RESEARCH SCHOLARS PROGRAM (MRSP)

The Medical Research Scholars Program bridges barriers between traditional predoctoral and medical training by providing both medically oriented course work and a mentored clinical experience to select BBS students. The course work provides a grounding in biomedicine, and the clinical experience enables students to interact with patients to learn firsthand about disease symptoms, treatment options, and the limitations of current therapies. This combination of medical knowledge and face-to-face interaction with patients and their doctors provides a new perspective to Ph.D. students and enhances the training in basic science already provided within the BBS program. Upon completion of their training, MRSP graduates will be capable of working much more closely with physicians and physician-scientists and will be better prepared to conduct clinically relevant basic research.

The MRSP is open only to students who have already been accepted into the BBS program, and a separate application is required. Five or six incoming students are admitted into the program each year. They remain in their BBS tracks but will participate in the additional MRSP curriculum. For more information see https://medicine.yale.edu/bbs/training/nihprograms.
COURSES

B&BS 501b, Responsible Conduct of Research Barbara Kazmierczak and John Forrest
The course is held in six (6) 1.5 hour sessions, with the participation of Yale faculty members. The course format is lecture with group discussion and case studies.

B&BS 503b, RCR Refresher for Senior BBS Students Anthony Koleske and John Alvaro
This course meets the NIH requirement that students receive training in the responsible conduct of research at least every four years. The course has two components: (1) one large-group session is held for all fourth-year BBS students; the main topics are scientific misconduct and authorship; and (2) each Ph.D. program will subsequently host one or two additional sessions just for fourth-year students in its program. Attendance is taken, and students who attend both components of the course receive a grade of Satisfactory. The course is graded Satisfactory/Unsatisfactory.

B&BS 550b, SkillDvlpmtDvrsScntfcCareers Susan Baserga, Anthony Koleske, and Barbara Kazmierczak

B&BS 640a / PATH 640a, Developing and Writing a Scientific Research Proposal Katarina Politi
The course covers the intricacies of scientific writing and guides students in the development of a scientific research proposal on the topic of their research. All elements of an NIH fellowship application are covered, and eligible students submit their applications for funding. Enrollment limited to twelve. Required of second-year graduate students in Experimental Pathology. Registration allowed by prior authorization from course directors only.

B&BS 680b / IMED 680b, Topics in Human Investigation Joseph Craft
The course teaches students about the process through which novel therapeutics are designed, clinically tested, and approved for human use. It is divided into two main components, with the first devoted to moving a chemical agent from the bench to the clinic, and the second to outlining the objectives and methods of conducting clinical trials according to the FDA approval process. The first component describes aspects of structure-based drug design and offers insight into how the drug discovery process is conducted in the pharmaceutical industry. The format includes background lectures with discussions, labs, and computer tutorials. The background lectures include a historical perspective on drug discovery, the current paradigm, and important considerations for future success. The second component of the course provides students with knowledge of the basic tools of clinical investigation and how new drugs are tested in humans. A series of lectures and discussions provides an overview of the objectives, research strategies, and methods of conducting patient-oriented research, with a focus on design of trials to test therapeutics. Each student is required to participate (as an observer) in an HIC review, in addition to active participation in class. Consent of instructor required.

B&BS 681a / PATH 681a, Advanced Topics in Cancer Biology Ryan Jensen
This advanced course focuses on readings and discussion on three or four major topics in cancer biology, such as targeted therapy, tumor immunology, tumor metabolism, and genomic evolution of cancer. For each topic, the class starts with an interactive lecture, followed by critical analysis of primary research literature. Recent research articles are assigned, and a student leads discussions with input from faculty who are experts in the topic area. Prerequisite: PATH 650 or permission of the instructor. Open to all Ph.D., M.D./Ph.D., and M.P.H. students and to advanced undergraduates at the discretion of the instructor.

B&BS 879a, Theory and Practice of Scientific Teaching Elizabeth Luoma