ASTRONOMY (ASTR)

* ASTR 040a / PHYS 040a, Expanding Ideas of Time and Space  
  Meg Urry  
  Discussions on astronomy, and the nature of time and space. Topics include the shape and contents of the universe, special and general relativity, dark and light matter, and dark energy. Observations and ideas fundamental to astronomers' current model of an expanding and accelerating four-dimensional universe. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program.  
  SC

ASTR 110a, Planets and Stars  
  Michael Faison  
  Astronomy introduction to stars and planetary systems. Topics include the solar system and extrasolar planets, planet and stellar formation, and the evolution of stars from birth to death. No prerequisite other than a working knowledge of elementary algebra.  
  QR, SC

ASTR 120b, Galaxies and the Universe  
  Robert Zinn  
  An introduction to stars and stellar evolution; the structure and evolution of the Milky Way galaxy and other galaxies; quasars, active galactic nuclei, and supermassive black holes; cosmology and the expanding universe. No prerequisite other than a working knowledge of elementary algebra.  
  QR, SC

ASTR 155a, Introduction to Astronomical Observing  
  Michael Faison  
  A hands-on introduction to techniques used in astronomy to observe astronomical objects. Observations of planets, stars, and galaxies using on-campus facilities and remote observing with Yale's research telescopes. Use of electronic detectors and computer-aided data processing. Evening laboratory hours required. One previous college-level science laboratory or astronomy course recommended.  
  SC ½ Course cr

ASTR 160a, Frontiers and Controversies in Astrophysics  
  Marla Geha  
  A detailed study of three fundamental areas in astrophysics that are currently subjects of intense research and debate: planetary systems around stars other than the sun; pulsars, black holes, and the relativistic effects associated with them; and the age and ultimate fate of the universe. No prerequisite other than a working knowledge of elementary algebra.  
  QR, SC

ASTR 170b, Introduction to Cosmology  
  Priyamvada Natarajan  
  An introduction to modern cosmological theories and observational astronomy. Topics include aspects of special and general relativity; curved space-time; the Big Bang; inflation; primordial element synthesis; the cosmic microwave background; the formation of galaxies; and large-scale structure. Prerequisite: a strong background in high school mathematics and physics.  
  QR, SC

ASTR 180b, Introduction to Relativity and Black Holes  
  Charles Bailyn  
  Introduction to the theories of special and general relativity, and to relativistic astronomy and astrophysics. Topics include time dilation and length contraction; mass-energy equivalence; space-time curvature; black holes; wormholes; pulsars; quasars; gravitational waves; Hawking radiation. For students not majoring in the physical sciences; some previous acquaintance with high-school physics and/or calculus may be helpful, but is not required.  
  QR, SC
ASTR 210a, Stars and Their Evolution  Robert Zinn  
Foundations of astronomy and astrophysics, focusing on an intensive introduction to stars. Nuclear processes and element production, stellar evolution, stellar deaths and supernova explosions, and stellar remnants including white dwarfs, neutron stars, and black holes. A close look at our nearest star, the sun. How extrasolar planets are studied; the results of such studies. Prerequisite: a strong background in high school calculus and physics. May not be taken after ASTR 220. QR, SC  o Course cr

ASTR 255a / PHYS 295a, Research Methods in Astrophysics  Staff  
An introduction to research methods in astronomy and astrophysics. The acquisition and analysis of astrophysical data, including the design and use of ground- and space-based telescopes, computational manipulation of digitized images and spectra, and confrontation of data with theoretical models. Examples taken from current research at Yale and elsewhere. Use of the Python programming language. Prerequisite: background in high school calculus and physics. No previous programming experience required. QR, SC  RP

ASTR 310a, Galactic and Extragalactic Astronomy  Jeffrey Kenney  
Structure of the Milky Way galaxy and other galaxies; stellar populations and star clusters in galaxies; gas and star formation in galaxies; the evolution of galaxies; galaxies and their large-scale environment; galaxy mergers and interactions; supermassive black holes and active galactic nuclei. Prerequisites: MATH 115, PHYS 201, and ASTR 210 or 220, or equivalents, or with permission of instructor. QR, SC

ASTR 330b, Scientific Computing in Astrophysics  Marla Geha  
Scientific computer programming in Astrophysics with a focus on the Python Programming language. Algorithms and workflows for reducing and analyzing Astrophysical datasets, both observational and computational. Emphasis is placed on best coding practices, including readability, version control, documentation, and computational efficiency. Weekly lectures, in-depth tutorial/workshops, and invited outside expert guest speakers. Students complete a programming project based on real astrophysical datasets. Prerequisite: ASTR 255 or permission of instructor. Some basic programming experience in Python is strongly recommended.

ASTR 343b / PHYS 343b, Gravity, Astrophysics, and Cosmology  Daisuke Nagai  
Introduction to frontier areas of research in astrophysics and cosmology exploring ideas and methods. In-depth discussion of the physics underlying several recent discoveries including extrasolar planets—their discovery, properties, and issues of habitability; black holes—prediction of their properties from GR, observational signatures, and detection; and the accelerating universe—introduction to cosmological models and the discovery of dark energy. Prerequisites: PHYS 170, 171, or 180, 181, or 200, 201, or 260, 261, or permission of instructor. QR, SC

ASTR 355b, Observational Astronomy  Pieter van Dokkum  
Optics for astronomers. Design and use of optical telescopes, photometers, spectrographs, and detectors for astronomical observations. Introduction to error analysis, concepts of signal-to-noise, and the reduction and analysis of photometric and spectroscopic observations. Prerequisite: one astronomy course numbered above 200, or permission of instructor. Previous experience with computer programming recommended. QR, SC  RP
ASTR 385b, Introduction to Radio Astronomy  Hector Arce
Introduction to the theory and techniques of radio astronomy, including radio emission mechanisms, propagation effects, antenna theory, interferometry, and spectroscopy. Discussion of specific sources such as Jupiter, radio stars, molecular clouds, radio galaxies, ETI, and the microwave background. Includes observational exercises with a small radio telescope. Prerequisites: MATH 120 and PHYS 201 or equivalents. QR, SC

ASTR 420a, Computational Methods for Astrophysics  Paolo Coppi
The analytic, numerical, and computational tools necessary for effective research in astrophysics and related disciplines. Topics include numerical solutions to differential equations, spectral methods, and Monte Carlo simulations. Applications to common astrophysical problems including fluids and N-body simulations. Prerequisites: ASTR 320, MATH 120, 222 or 225, and 246. QR, RP

ASTR 450a, Stellar Astrophysics  Sarbani Basu
The physics of stellar atmospheres and interiors. Topics include the basic equations of stellar structure, nuclear processes, stellar evolution, white dwarfs, and neutron stars. Prerequisites: PHYS 201 and MATH 120. Taught in alternate years. QR, SC

* ASTR 471a and ASTR 472b, Independent Project in Astronomy  Marla Geha
Independent project supervised by a member of the department with whom the student meets regularly. The project must be approved by the instructor and by the director of undergraduate studies; the student is required to submit a complete written report on the project at the end of the term.

* ASTR 490a and ASTR 491b, The Two-Term Senior Project  Marla Geha
A two-term independent research project to fulfill the senior requirement for the B.S. degree. The project must be supervised by a member of the department and approved by the director of undergraduate studies.

* ASTR 492a or b, The One-Term Senior Project  Marla Geha
A one-term independent research project or essay to fulfill the senior requirement for the B.A. degree. The project must be supervised by a member of the department and approved by the director of undergraduate studies.