Chemical Engineering (CENG)

CENG S150Ea / CENG 150a, Engineering Improv: An Introduction to Engineering AnalysisMichael Loewenberg

Online Course. Mathematical modeling is not a scripted procedure. Models are constrained by physical principles, including conservation laws and experimental observations but this does not provide a closed description. There is a lot more art in mathematical modeling than is commonly acknowledged and improvisation plays a significant role.  The artistic aspects are important and intellectually engaging because they often lead to a deeper understanding. This course provides a general introduction to engineering analysis and to chemical engineering principles. Material includes the derivation of governing equations from first principles and the analysis of these equations, including underlying assumptions, degrees of freedom, dimensional analysis, scaling arguments, and approximation techniques. The goal of this course is to obtain the necessary skills for improvising mathematical models for a broad range of problems that arise in engineering, science and everyday life. Students from all majors are encouraged to take this course. 1 Credit. Technology fee: $85. Tuition:  $4,650. Session A: May 30 - July 1.  QR, SC
TTh 1pm-2:15pm

CENG S300b / CENG 300b, Chemical Engineering ThermodynamicsPeijun Guo

Online Course. This is a rigorous introductory course in thermodynamics. Material will include the first and second laws of thermodynamics, cyclic processes, chemical reaction and phase equilibria, and an introduction to statistical thermodynamics. The goal of this course is for students to obtain the necessary qualitative knowledge and quantitative skills for solving engineering science problems in thermodynamics. Prerequisite: Multivariable calculus. 1 Credit. Technology Fee: $85. Tuition: $4,500. Session B: July 12 - August 13.  QR, SC
MW 2:30pm-3:45pm

* CENG 120b / ENAS 120b / ENVE 120b, Introduction to Environmental EngineeringJohn Fortner

Introduction to engineering principles related to the environment, with emphasis on causes of problems and technologies for abatement. Topics include air and water pollution, global climate change, hazardous chemical and emerging environmental technologies. Prerequisites: high school calculus and chemistry or CHEM 161, 165 or CHEM 163, 167 (may be taken concurrently) or permission of instructor.  QR, SC
TTh 1pm-2:15pm

CENG 150a / CENG S150Ea, Engineering Improv: An Introduction to Engineering AnalysisMichael Loewenberg

Mathematical modeling is not a scripted procedure. Models are constrained by physical principles, including conservation laws and experimental observations but this does not provide a closed description. There is a lot more art in mathematical modeling than is commonly acknowledged and improvisation plays a significant role.  The artistic aspects are important and intellectually engaging because they often lead to a deeper understanding. This course provides a general introduction to engineering analysis and to chemical engineering principles. Material includes the derivation of governing equations from first principles and the analysis of these equations, including underlying assumptions, degrees of freedom, dimensional analysis, scaling arguments, and approximation techniques. The goal of this course is to obtain the necessary skills for improvising mathematical models for a broad range of problems that arise in engineering, science and everyday life. Students from all majors are encouraged to take this course. Prerequisite: MATH 112.  QR, SC
TTh 1pm-2:15pm

CENG 300b / CENG S300b, Chemical Engineering ThermodynamicsPeijun Guo

Analysis of equilibrium systems. Topics include energy conservation, entropy, heat engines, Legendre transforms, derived thermodynamic potentials and equilibrium criteria, multicomponent systems, chemical reaction and phase equilibria, systematic derivation of thermodynamic identities, criteria for thermodynamic stability, and introduction to statistical thermodynamics. Prerequisite: MATH 120 or ENAS 151 or permission of instructor.  QR, SCRP
MW 2:30pm-3:45pm

CENG 301b, Chemical Kinetics and Chemical ReactorsMingjiang Zhong

Physical-chemical principles and mathematical modeling of chemical reactors. Topics include homogeneous and heterogeneous reaction kinetics, catalytic reactions, systems of coupled reactions, selectivity and yield, chemical reactions with coupled mass transport, nonisothermal systems, and reactor design. Applications from problems in environmental, biomedical, and materials engineering. Prerequisite: ENAS 194 or permission of instructor.  QR, SCRP
MW 1pm-2:15pm

CENG 314a / ENVE 314a, Transport Phenomena IKyle Vanderlick

First of a two-semester sequence. Unified treatment of momentum, energy, and chemical species transport including conservation laws, flux relations, and boundary conditions. Topics include convective and diffusive transport, transport with homogeneous and heterogeneous chemical reactions and/or phase change, and interfacial transport phenomena. Emphasis on problem analysis and mathematical modeling, including problem formulation, scaling arguments, analytical methods, approximation techniques, and numerical solutions. Prerequisite: ENAS 194 or permission of the instructor.  QR, SCRP
TTh 1pm-2:15pm

CENG 315b / ENVE 315b, Transport Phenomena IIMichael Loewenberg

Unified treatment of momentum, energy, and chemical species transport including conservation laws, flux relations, and boundary conditions. Topics include convective and diffusive transport, transport with homogeneous and heterogeneous chemical reactions and/or phase change, and interfacial transport phenomena. Emphasis on problem analysis and mathematical modeling, including problem formulation, scaling arguments, analytical methods, approximation techniques, and numerical solutions. Prerequisite: ENAS 194 or permission of instructor.  QR, SC
TTh 1pm-2:15pm

CENG 345b / ENAS 345b, Principles and Applications of Interfacial PhenomenaKyle Vanderlick

This course covers the nature and consequences of both flexible and rigid interfaces, such as those associated with liquids and solids respectively. We examine the properties of interfaces as they exist alone, as a collective (e.g., colloids), and also as they interact demonstrably with one another. Examples of the latter include thin films, confined fluids and biological membranes. An integral part of this course is the introduction and application of engineering analysis (e.g., finite element analysis) to calculate and predict behaviors central to technological applications.  SC
TTh 2:30pm-3:45pm

CENG 351b / BENG 351b, Biotransport and KineticsStaff

Creation and critical analysis of models of biological transport and reaction processes. Topics include mass and heat transport, biochemical interactions and reactions, and thermodynamics. Examples from diverse applications, including drug delivery, biomedical imaging, and tissue engineering. Prerequisites: MATH 115, ENAS 194; BIOL 101 and 102; CHEM 161, 163, or 167; BENG 249.  QR0 Course cr
HTBA

CENG 373a / ENVE 373a, Air Pollution ControlDrew Gentner

An overview of air quality problems worldwide with a focus on emissions, chemistry, transport, and other processes that govern dynamic behavior in the atmosphere. Quantitative assessment of the determining factors of air pollution (e.g., transportation and other combustion–related sources, chemical transformations), climate change, photochemical “smog,” pollutant measurement techniques, and air quality management strategies. Prerequisite: ENVE 120.  QR, SCRP
MW 2:30pm-3:45pm

* CENG 377a / ENVE 377a, Water-Energy NexusLea Winter

This course explores processes and technologies at the water-energy nexus. We utilize chemical and environmental engineering fundamentals to explore the links between maintaining clean water supply and energy security globally, as well as implications for environmental contamination and climate change. We develop a quantitative understanding of water chemistry and energy considerations for topics including traditional water and wastewater treatment, energy recovery from wastewater, membrane processes, water electrolysis for energy storage and electrochemical contaminant conversion, industrial water consumption and wastewater production, underground water sources and water for oil and gas, opportunities for reuse of nontraditional source waters and contaminant valorization, and considerations for decentralization, resilience, and electrification. Quantitative understanding of these processes will be attained based on mass and energy balances, systems engineering, thermodynamics, and kinetics. Prerequisite: ENVE 120 or permission of instructor. The course is primarily designed for juniors and seniors majoring in environmental engineering, but students in other engineering majors are welcome. Students in non-engineering majors are also welcome but are encouraged to communicate with the instructor to make sure they have sufficient background knowledge in required mathematics.    QR, SC
TTh 2:30pm-3:45pm

CENG 411a, Separation and Purification ProcessesPaul Van Tassel

Theory and design of separation processes for multicomponent and/or multiphase mixtures via equilibrium and rate phenomena. Topics include single-stage and cascaded absorption, adsorption, extraction, distillation, partial condensation, filtration, and crystallization processes. Applications to environmental engineering (air and water pollution control), biomedical-chemical engineering (artificial organs, drug purification), food processing, and semiconductor processing. Prerequisite: CENG 300 or 315 or permission of instructor.  QR, SCRP
MW 1pm-2:15pm

CENG 412Lb, Chemical Engineering Laboratory and DesignLisa Pfefferle

An introduction to design as practiced by chemical and environmental engineers. Engineering fundamentals, laboratory experiments, and design principles are applied toward a contemporary chemical process challenge. Sustainability and economic considerations are emphasized.  SC
M 2:30pm-5:30pm

CENG 416b / ENVE 416b, Chemical Engineering Process DesignYehia Khalil

Study of the techniques for and the design of chemical processes and plants, applying the principles of chemical engineering and economics. Emphasis on flowsheet development and equipment selection, cost estimation and economic analysis, design strategy and optimization, safety and hazards analysis, and environmental and ethical considerations. Enrollment limited to seniors majoring in Chemical Engineering or Environmental Engineering.  QR, SCRP
TTh 4pm-5:15pm

CENG 471a or b, Independent ResearchPaul Van Tassel

Faculty-supervised individual student research and design projects. Emphasis on the integration of mathematics with basic and engineering sciences in the solution of a theoretical, experimental, and/or design problem. May be taken more than once for credit.
HTBA

CENG 480a, Chemical Engineering Process ControlEric Altman

Transient regime modeling and simulations of chemical processes. Conventional and state-space methods of analysis and control design. Applications of modern control methods in chemical engineering. Course work includes a design project. Prerequisite: ENAS 194 or permission of instructor.  QR, SCRP
TTh 9am-10:15am

* CENG 490a or b, Senior Research ProjectPaul Van Tassel

Individual research and/or design project supervised by a faculty member in Chemical Engineering, or in a related field with permission of the director of undergraduate studies.
HTBA