ECOLOGY & EVOLUTIONARY BIOLOGY (E&EB)

* E&EB 106a / HLTH 155a / MCDB 106a, Biology of Malaria, Lyme, and Other Vector-Borne Diseases Alexia Belperron
Introduction to the biology of pathogen transmission from one organism to another by insects; special focus on malaria, dengue, and Lyme disease. Biology of the pathogens including modes of transmission, establishment of infection, and immune responses; the challenges associated with vector control, prevention, development of vaccines, and treatments. Intended for non-science majors; preference to freshmen and sophomores. Prerequisite: high school biology. sc

* E&EB 125b / EPS 125b, History of Life Pinelli Hull and Derek Briggs
Examination of fossil and geologic evidence pertaining to the origin, evolution, and history of life on Earth. Emphasis on major events in the history of life, on what the fossil record reveals about the evolutionary process, on the diversity of ancient and living organisms, and on the evolutionary impact of Earth’s changing environment. sc

E&EB 210a / S&DS 101a, Introduction to Statistics: Life Sciences Jonathan Reuning-Scherer and Walter Jetz
Statistical and probabilistic analysis of biological problems, presented with a unified foundation in basic statistical theory. Problems are drawn from genetics, ecology, epidemiology, and bioinformatics. QR

E&EB 220a / EVST 223a, General Ecology David Vasseur and Carla Staver
The theory and practice of ecology, including the ecology of individuals, population dynamics and regulation, community structure, ecosystem function, and ecological interactions at broad spatial and temporal scales. Topics such as climate change, fisheries management, and infectious diseases are placed in an ecological context. Prerequisite: MATH 112 or equivalent. sc

E&EB 223Lb, Laboratory for Principles of Ecology, Evolutionary Biology, and the Tree of Life Marta Wells
Study of evolutionary novelties, their functional morphology, and their role in the diversity of life. Introduction to techniques used for studying the diversity of animal body plans. Evolutionary innovations that have allowed groups of organisms to increase their diversity. sc ½ Course cr

E&EB 225b, Evolutionary Biology Alvaro Sanchez
An overview of evolutionary biology as the discipline uniting all of the life sciences. Reading and discussion of scientific papers to explore the dynamic aspects of evolutionary biology. Principles of population genetics, paleontology, and systematics; application of evolutionary thinking in disciplines such as developmental biology, ecology, microbiology, molecular biology, and human medicine. sc

E&EB 228b, Ecology and Evolution of Infectious Diseases Paul Turner
Overview of the ecology and evolution of pathogens (bacteria, viruses, protozoa) and their impact on host populations. Topics include theoretical concepts, ecological and evolutionary dynamics, molecular biology, and epidemiology of ancient and emerging diseases. Prerequisite: BIOL 104 or permission of instructor. sc

* E&EB 238a, Research in Viral Genomics Staff
This research-based course provides an introduction to genomics research in microbiology, with a hybrid approach involving lab exercises, mentored research, and active-learning based lectures. This course helps students determine if they are interested in undergraduate research in a research lab on campus. The overall scientific goal of the course is to teach the background knowledge necessary to determine the locations and predicted functions of all genes in a newly characterized viral genome, which is done with the accompanying lab, E&EB 239L. The lecture and lab must be taken concurrently. Space is limited and students must submit an application. No previous research experience is necessary. Contact instructor with questions. Prerequisites: BIOL 101 and 102. sc

* E&EB 239La, Research in Viral Genomics Laboratory Staff
This research-based laboratory provides an introductory experience with genomics research in microbiology and helps students determine if they are interested in undergraduate research in a research lab on campus. The overall scientific goal is to determine the locations and predicted functions of all genes in a newly characterized viral genome, with the potential outcome of publishing results as a peer-reviewed scientific manuscript. This lab must be taken concurrently with E&EB 238. Space is limited and students must submit an application. No previous research experience is necessary. Contact instructor with questions. Prerequisites: BIOL 101 and 102. sc ½ Course cr

E&EB 246a, Plant Diversity and Evolution Erika Edwards
This course has several, interrelated objectives. First, it serves as an introduction to the science of phylogenetics, providing an overview of both the theory and methodology involved in constructing phylogenetic trees, and how to use trees to study character and organismal evolution. For our second objective, we put this new framework to immediate use by using phylogeny to explore and illustrate 400 million years of land plant evolution, with emphasis on the diversity of flowering plants. The course examines major trends in plant evolution from functional, ecological, and bio-geographical perspectives. Students acquire a basic understanding of 1) phylogenetic approaches to comparative biology, 2) plant anatomy and morphology, 3) evolutionary relationships among the major land plant clades (with emphasis on the flowering plants), and 4) major evolutionary trends that have significantly shaped the diversity of plant life that we see today. The third and most important objective is to instill in students the ability to look at any biological problem through the lens of "phylogeny-colored glasses" - a powerful way to examine the complexity of life that surrounds (and includes!) us. Prerequisite: BIOL 104. sc
E&EB 247La, Laboratory for Plant Diversity and Evolution Erika Edwards
Hands-on experience with the plant groups examined in the accompanying lectures. Local field trips. To be taken concurrently with E&EB 246. SC ½ Course cr

E&EB 250a, Biology of Terrestrial Arthropods Marta Wells
Evolutionary history and diversity of terrestrial arthropods (body plan, phylogenetic relationships, fossil record); physiology and functional morphology (water relations, thermoregulation, energetics of flying and singing); reproduction (biology of reproduction, life cycles, metamorphosis, parental care); behavior (migration, communication, mating systems, evolution of sociality); ecology (parasitism, mutualism, predator-prey interactions, competition, plant-insect interactions). To be taken concurrently with E&EB 251L. SC

E&EB 251La, Laboratory for Biology of Terrestrial Arthropods Marta Wells
Comparative anatomy, dissections, identification, and classification of terrestrial arthropods; specimen collection; field trips. Concurrently with or after E&EB 250. SC ½ Course cr

E&EB 255a, Invertebrates Casey Dunn
An overview of animal diversity that explores themes including animal phylogenetics (evolutionary relationships), comparative studies of evolutionary patterns across species, organism structure and function, and the interaction of organisms with their environments. Most animal lineages are marine invertebrates, so marine invertebrates are the focus of most of the course. E&EB 256L is not required to enroll in the lecture. SC

E&EB 256La, Laboratory for Invertebrates Casey Dunn
The study of invertebrate anatomy and diversity in a laboratory and field setting. Activities will include will examine live animals and museum specimens, as well as local field trips. Some field trips will fall on weekends. This lab must be taken concurrently with the lecture E&EB 255. SC ½ Course cr

E&EB 290b, Comparative Developmental Anatomy of Vertebrates Staff
A survey of the development, structure, and evolution of major vertebrate groups. Topics include the micro-anatomy of major organ systems, the developmental underpinnings of the vertebrate body plan, and the development, structure, and evolution of the major organ systems such as the locomotory system, sensory organs, digestive tract, reproductive tract, and nervous system. SC

E&EB 291Lb, Comparative Anatomy of Vertebrates Laboratory Staff
Microscopic examination of histological and embryological preparations. Dissection of selected vertebrate species including shark, bony fish, frog, lizard, and rat. To be taken with E&EB 290. SC ½ Course cr

* E&EB 335a / HLTH 250a, Evolution and Medicine Brandon Ogbunu
Introduction to the ways in which evolutionary science informs medical research and clinical practice. Diseases of civilization and their relation to humans’ evolutionary past; the evolution of human defense mechanisms; antibiotic resistance and virulence in pathogens; cancer as an evolutionary process. Students view course lectures on line; class time focuses on discussion of lecture topics and research papers. Prerequisite: BIOL 101–104. WR, SC

E&EB 428a / AMTH 428a / EPS 428a / PHYS 428a, Science of Complex Systems Jun Korenaga
Introduction to the quantitative analysis of systems with many degrees of freedom. Fundamental components in the science of complex systems, including how to simulate complex systems, how to analyze model behaviors, and how to validate models using observations. Topics include cellular automata, bifurcation theory, deterministic chaos, self-organized criticality, renormalization, and inverse theory. Prerequisite: PHYS 301, MATH 247, or equivalent. QR, SC

E&EB 464a / ANTH 464a / ARCG 464a, Human Osteology Eric Sargis
A lecture and laboratory course focusing on the characteristics of the human skeleton and its use in studies of functional morphology, paleodemography, and paleopathology. Laboratories familiarize students with skeletal parts; lectures focus on the nature of bone tissue, its biomechanical modification, sexing, aging, and interpretation of lesions. SC, SO

* E&EB 469a or b, Tutorial Marta Wells
Individual or small-group study for qualified students who wish to investigate an area of ecology or evolutionary biology not presently covered by regular courses. A student must be sponsored by a faculty member who sets requirements and meets weekly with the student. One or more written examinations and/or a term paper are required. To register, the student must submit a written plan of study approved by the faculty instructor to the director of undergraduate studies. Students are encouraged to apply during the term preceding the tutorial. Proposals must be submitted no later than the first day of the second week of the term in which the student enrolls in the tutorial. The final paper is due in the hands of

* E&EB 470a or b, Senior Tutorial Marta Wells
Tutorial for seniors in the B.A. degree program who elect a term of independent study to complete the senior requirement. A thesis, fifteen to twenty pages in length, is required. A student must be sponsored by a faculty member who sets requirements and meets weekly with the student. To register, the student must submit a written plan of study approved by the faculty instructor to the director of undergraduate studies. Students are encouraged to apply during the term preceding the tutorial. Proposals must be submitted no later than the first day of the second week of the term in which the student enrolls in the tutorial. The final paper is due in the hands of
the director of undergraduate studies by the last day of reading period in the term of enrollment. Normally, faculty sponsors must be members of the EEB department. Enrollment limited to seniors. Fulfills the senior requirement for the B.A. degree.

* E&EB 474a or b, Research [Marta Wells](#)

One term of original research in an area relevant to ecology or evolutionary biology. This may involve, for example, laboratory work, fieldwork, or mathematical or computer modeling. Students may also work in areas related to environmental biology such as policy, economics, or ethics. The research project may not be a review of relevant literature but must be original. In all cases students must have a faculty sponsor who oversees the research and is responsible for the rigor of the project. Students are expected to spend ten hours per week on their research projects. Using the form available from the office of undergraduate studies or from the Canvas, students must submit a research proposal that has been approved by the faculty sponsor to the director of undergraduate studies, preferably during the term preceding the research. Proposals are due no later than the first day of the second week of the term in which the student enrolls in the course. The final research paper is due in the hands of the director of undergraduate studies by the last day of reading period in the term of enrollment.

* E&EB 475a and E&EB 476b, Senior Research [Marta Wells](#)

One term of original research in an area relevant to ecology or evolutionary biology. This may involve, for example, laboratory work, fieldwork, or mathematical or computer modeling. Students may also work in areas related to environmental biology such as policy, economics, or ethics. The research project may not be a review of relevant literature but must be original. In all cases students must have a faculty sponsor who oversees the research and is responsible for the rigor of the project. Students are expected to spend ten hours per week on their research projects. Using the form available from the office of undergraduate studies or from the Canvas, students must submit a research proposal that has been approved by the faculty sponsor to the director of undergraduate studies, preferably during the term preceding the research. Proposals are due no later than the first day of the second week of the term in which the student enrolls in the course. The final research paper is due in the hands of the director of undergraduate studies by the last day of classes in the term of enrollment. Fulfills the senior requirement for the B.S. degree. Enrollment limited to seniors.

* E&EB 495a and E&EB 496b, Intensive Senior Research [Marta Wells](#)

One term of intensive original research during the senior year under the sponsorship of a Yale faculty member. Similar to other research courses except that a more substantial portion of a student’s time and effort should be spent on the research project (a minimum average of twenty hours per week). A research proposal approved by the sponsoring faculty member must be submitted to the director of undergraduate studies; forms are available from the office of undergraduate studies. For research in the fall term, approval is encouraged during the spring term of the junior year. Proposals are due no later than the first day of the second week of the term in which the student enrolls in the course. The final research paper is due in the hands of the director of undergraduate studies by the last day of reading period in the term of enrollment. One term of intensive research fulfills a portion of the senior requirement for the B.S. degree. 2 Course cr per term