ELECTRICAL ENGINEERING (EENG)

EENG 200a, Introduction to Electronics Jung Han
Introduction to the basic principles of analog and digital electronics. Analysis, design, and synthesis of electronic circuits and systems. Topics include current and voltage laws that govern electronic circuit behavior, node and loop methods for solving circuit problems, DC and AC circuit elements, frequency response, nonlinear circuits, semiconductor devices, and small-signal amplifiers. A lab session approximately every other week. After or concurrently with MATH 115 or equivalent. QR, WR, SC

EENG 201b, Introduction to Computer Engineering Priya Panda
Introduction to the theoretical principles underlying the design and programming of simple processors that can perform algorithmic computational tasks. Topics include data representation in digital form, combinational logic design and Boolean algebra, sequential logic design and finite state machines, and basic computer architecture principles. Hands-on laboratory involving the active design, construction, and programming of a simple processor. QR

EENG 202a, Communications, Computation, and Control Roman Kuc
Introduction to systems that sense, process, control, and communicate. Topics include information theory and coding (compression, channel coding); network systems (network architecture, routing, wireless networks); signals and systems (linear systems, Fourier techniques, bandlimited sampling); estimation and learning (hypothesis testing, regression, classification); and end-to-end application examples (security, communication systems). MATLAB programming assignments illustrate concepts. Students should have basic familiarity with counting (combinatorics), probability and statistics (independence between events, conditional probability, expectation of random variables, uniform distribution). Prerequisite: MATH 115. AP Stats preferred. QR

EENG 203b, Circuits and Systems Design Hong Tang
Introduction to design in a laboratory setting. A wide variety of practical systems are designed and implemented to exemplify the basic principles of systems theory. Systems include audio filters and equalizers, electrical and electromechanical feedback systems, radio transmitters and receivers, and circuits for sampling and reconstructing music. Prerequisites: EENG 200 QR, SC RP

* EENG 235a and EENG 236b, Special Projects Mark Reed
Faculty-supervised individual or small-group projects with emphasis on laboratory experience, engineering design, or tutorial study. Students are expected to consult the director of undergraduate studies and appropriate faculty members about ideas and suggestions for suitable topics during the term preceding enrollment. These courses may be taken at any time during the student’s career. Enrollment requires permission of both the instructor and the director of undergraduate studies, and submission to the latter of a one- to two-page prospectus signed by the instructor. The prospectus is due in the departmental office one day prior to the date that the student’s course schedule is due. ½ Course cr per term

EENG 310b, Signals and Systems Staff
Concepts for the analysis of continuous and discrete-time signals including time series. Techniques for modeling continuous and discrete-time linear dynamical systems including linear recursions, difference equations, and shift sequences. Topics include continuous and discrete Fourier analysis, Laplace and Z transforms, convolution, sampling, data smoothing, and filtering. Prerequisite: MATH 115. Recommended preparation: EENG 202. QR

EENG 320a / APHY 320a, Introduction to Semiconductor Devices Hong Tang
An introduction to the physics of semiconductors and semiconductor devices. Topics include crystal structure; energy bands in solids; charge carriers with their statistics and dynamics; junctions, p-n diodes, and LEDs; bipolar and field-effect transistors; and device fabrication. Additional lab one afternoon per week. Prepares for EENG 325 and 401. Recommended preparation: EENG 200. PHYS 180 and 181 or permission of instructor QR, SC RP

EENG 325a, Electronic Circuits Fengnian Xia
Models for active devices; single-ended and differential amplifiers; current sources and active loads; operational amplifiers; feedback; design of analog circuits for particular functions and specifications, in actual applications wherever possible, using design-oriented methods. Includes a team-oriented design project for real-world applications, such as a high-power stereo amplifier design. Electronics Workbench is used as a tool in computer-aided design. Additional lab one afternoon per week. Prerequisite: EENG 200. QR RP

EENG 348b / CPSC 338b, Digital Systems Rajit Manohar
Development of engineering skills through the design and analysis of digital logic components and circuits. Introduction to gate-level circuit design, beginning with single gates and building up to complex systems. Hands-on experience with circuit design using computer-aided design tools and microcontroller programming. Recommended preparation: EENG 201. QR

EENG 400b, Electronic Materials Jung Han
Survey and review of fundamental material issues pertinent to modern microelectronic and optoelectronic technology. Topics include band theory, electronic transport, surface kinetics, diffusion, defects in crystals, thin film elasticity, crystal growth, and heteroepitaxy. Formerly EENG 408. Prerequisite: EENG 320 or permission of instructor QR, SC
EENG 402b / PHY 418b, Advanced Electron Devices Staff
The science and technology of semiconductor electron devices. Topics include compound semiconductor material properties and growth techniques; heterojunction, quantum well and superlattice devices; quantum transport; graphene and other 2D material systems. Formerly EENG 418. Prerequisite: EENG 320 or equivalent. QR, SC

EENG 406b, Photovoltaic Energy Fengnian Xia
Survey of photovoltaic energy devices, systems, and applications, including review of optical and electrical properties of semiconductors. Topics include solar radiation, solar cell design, performance analysis, solar cell materials, device processing, photovoltaic systems, and economic analysis. Prerequisite: EENG 320 or permission of instructor. QR, SC

* EENG 422b / CPSC 449b, Computer Architectures and Artificial Intelligence Richard Lethin
Introduction to the development of computer architectures specialized for cognitive processing, including both offline 'thinking machines' and embedded devices. The history of machines, from early conceptions in defense systems to contemporary initiatives. Instruction sets, memory systems, parallel processing, analog architectures, probabilistic architectures. Application and algorithm characteristics. Formerly EENG 449. Prerequisites: CPSC 100, CPSC 112, or equivalent programming experience; EENG 325, EENG 348, or equivalent circuits and digital logic experience; or permission of instructor. QR

EENG 426a / CPSC 448a / ENAS 876a, Silicon Compilation Rajit Manohar
An upper-level course on compiling computations into digital circuits using asynchronous design techniques. Emphasis is placed on the synthesis of circuits that are robust to uncertainties in gate and wire delays by the process of program transformations. Topics include circuits as concurrent programs, delay-insensitive design techniques, synthesis of circuits from programs, timing analysis and performance optimization, pipelining, and case studies of complex asynchronous designs. Prerequisite: EENG 201 and introductory programming, or permission of instructor.

EENG 428b, Cloud FPGA Jakub Szefer
This course is an intermediate to advanced level course focusing on digital design and use of Field Programmable Gate Arrays (FPGAs). In addition, it centers around the new computing paradigm of Cloud FPGAs, where the FPGAs are hosted remotely by cloud providers and accessed remotely by users. The theoretical aspects of the course focus on digital system modeling and design using the Verilog Hardware Description Language (Verilog HDL). In the course, students learn about logic synthesis, behavioral modeling, module hierarchies, combinatorial and sequential primitives, and implementing and testing the designs in simulation and real FPGAs. Students also learn about FPGA tools from two major vendors: for Xilinx FPGAs and Intel FPGAs (formerly Altera). The practical aspects focus on designing systems using commercial Cloud FPGA infrastructures: Amazon F1 service (Xilinx FPGAs) or through the Texas Advanced Computing Center (Intel FPGAs). Students learn about cloud computing, interfacing servers to FPGAs, PCIe and AXI protocols, and how to write software that runs on the cloud servers and leverages the FPGAs for acceleration of various computations. Prerequisites: EENG 201 and 348 or permission of the instructor. Students should be familiar with digital design basics and have some experience with Hardware Description Languages such as Verilog or VHDL. QR

* EENG 432a / AMTH 342a, Linear Systems A Stephen Morse
Introduction to finite-dimensional, continuous, and discrete-time linear dynamical systems. Exploration of the basic properties and mathematical structure of the linear systems used for modeling dynamical processes in robotics, signal and image processing, economics, statistics, environmental and biomedical engineering, and control theory. Prerequisite: MATH 222 or permission of instructor. QR

EENG 434b / MATH 351b / S&DS 351b, Stochastic Processes Staff
Introduction to the study of random processes including linear prediction and Kalman filtering, Poisson counting process and renewal processes, Markov chains, branching processes, birth-death processes, Markov random fields, martingales, and random walks. Applications chosen from communications, networking, image reconstruction, Bayesian statistics, finance, probabilistic analysis of algorithms, and genetics and evolution. Prerequisite: S&DS 241 or equivalent. QR

* EENG 435b / AMTH 362b / CPSC 362b, Decisions and Computations across Networks A Stephen Morse
For a long time there has been interest in distributed computation and decision making problems of all types. Among these are consensus and flocking problems, the multi-agent rendezvous problem, distributed averaging, gossiping, localization of sensors in a multi-sensor network, distributed algorithms for solving linear equations, distributed management of multi-agent formations, opinion dynamics, and distributed state estimation. The aim of this course is to explain what these problems are and to discuss their solutions. Related concepts from spectral graph theory, rigid graph theory, non-homogeneous Markov chain theory, stability theory, and linear system theory are covered. Although most of the mathematics need is covered in the lectures, students taking this course should have a working understanding of basic linear algebra. The course is open to all students. Prerequisite: Linear algebra or instructor permission. SC

EENG 439a, Neural Networks and Learning Systems Priya Panda
Neural networks (NNs) have become all-pervasive giving us self-driving cars, Siri Voice assistants, Alexa, and much more. While deep NNs deliver state-of-the-art accuracy on many artificial intelligence tasks, it comes at the cost of high computational complexity. Accordingly, designing efficient hardware architectures for deep neural networks is an important step towards enabling the wide deployment of NNs, particularly in low-power computing platforms, such as, mobiles, embedded Internet of Things (IoT) and drones. This course aims to provide a thorough overview on deep learning techniques, while highlighting the key trends and advances toward efficient processing of deep learning in hardware systems, considering algorithm-hardware co-design techniques. Prerequisites: MATH 222 or CPSC 202, EENG 201, and knowledge of Python programming.
* EENG 451a / CPSC 456a, Wireless Technologies and the Internet of Things Wenjun Hu
Over the last two decades or so, consumer IoT technologies have evolved from individual analogous devices, to connected devices and then interconnected networks of devices, from data collection to data management, from smart devices to intelligent interfaces. Wireless connectivity is an important driver of IoT technologies. This course aims to weave together fundamental theory of wireless communications, its application to IoT, and the design and implementation of wireless network architectures. The concepts are illustrated using examples such as WiFi and LTE/5G. Particular emphasis is placed on the interplay between concepts and their implementation in real systems. The coursework offers a practical experience, built on lab sessions involving WiFi experiments and simple IoT setups, homework involving Matlab-based analysis, and a student-defined course project that can cater to diverse interests. Students can expect to learn background knowledge of some everyday wireless technologies and how to design systems based on the fundamental communications concepts. Given the nature of these invisible signals, students also gain some experience of dealing with uncertainty in experiments and working towards open-ended goals. Depending on the programming background of the students, we may also explore backend system support in the form of edge or cloud computing. Prerequisites: 1) Introductory courses in mathematics, engineering, or computer science covering basics of the following topics: Linux skills, Matlab programming, probability, linear algebra, and Fourier transform; 2) Or by permission of the instructor. Course material will be self-contained as much as possible. The labs and homework assignments require Linux and Matlab skills and simple statistical and matrix analysis (using built-in Matlab functions). There will be a couple of introductory labs to refresh Linux and Matlab skills if needed.

* EENG 452a, Internet Engineering Leandros Tassiulas
Introduction to basic Internet protocols and architectures. Topics include packet-switch and multi-access networks, routing, flow control, congestion control, Internet protocols (IP, TCP, BGP), the client-server model, IP addressing and the domain name system, wireless access networks, and mobile communications. Prerequisite: a college-level course in mathematics, engineering, or computer science, or with permission of instructor. QR

EENG 454b / AMTH 364b / S&DS 364b, Information Theory Andrew Barron
Foundations of information theory in communications, statistical inference, statistical mechanics, probability, and algorithmic complexity. Quantities of information and their properties: entropy, conditional entropy, divergence, redundancy, mutual information, channel capacity. Basic theorems of data compression, data summarization, and channel coding. Applications in statistics and finance. After STAT 241. QR

* EENG 455b, Network Algorithms and Stochastic Optimization Leandros Tassiulas
This course focuses on resource allocation models as well as associated algorithms and design and optimization methodologies that capture the intricacies of complex networking systems in communications computing as well as transportation, manufacturing, and energy systems. Max-weight scheduling, back-pressure routing, wireless opportunistic scheduling, time-varying topology network control, and energy-efficient management are sample topics to be considered, in addition to Lyapunov stability and optimization, stochastic ordering, and notions of fairness in network resource consumption. QR

* EENG 468a and EENG 469b, Advanced Special Projects Mark Reed
Faculty-supervised individual or small-group projects with emphasis on research (laboratory or theory), engineering design, or tutorial study. Students are expected to consult the director of undergraduate studies and appropriate faculty members about ideas and suggestions for suitable topics during the term preceding enrollment. This course may only be taken once and at any appropriate time during the student’s career; it does not fulfill the senior requirement. Enrollment requires permission of both the instructor and the DUS, and submission to the latter of a one- to two-page prospectus approved by the instructor. The prospectus is due to the DUS one day prior to the date that the student’s course schedule is due.

* EENG 471a and EENG 472b, Senior Advanced Special Projects Mark Reed
Faculty-supervised individual or small-group projects with emphasis on research (laboratory or theory), engineering design, or tutorial study. Students are expected to consult the director of undergraduate studies and appropriate faculty members about ideas and suggestions for suitable topics during the term preceding enrollment. This course is only open to seniors and is one of the courses that fulfills the senior requirement. Enrollment requires permission of both the instructor and the DUS, and submission to the latter of a one- to two-page prospectus approved by the instructor. The prospectus is due to the DUS one day prior to the date that the student’s course schedule is due.

EENG 475a / BENG 475a / CPSC 475a, Computational Vision and Biological Perception Steven Zucker
An overview of computational vision with a biological emphasis. Suitable as an introduction to biological perception for computer science and engineering students, as well as an introduction to computational vision for mathematics, psychology, and physiology students. Prerequisite: CPSC 112 and MATH 120, or with permission of instructor. QB, SC RP

* EENG 481b, Advanced ABET Projects Roman Kuc
Study of the process of designing an electrical device that meets performance specifications, including project initiation and management, part specification, teamwork, design evolution according to real-world constraints, testing, ethics, and communication skills. Design project consists of electronic sensor, computer hardware, and signal analysis components developed by multidisciplinary teams. Prerequisites: EENG 310, 320, 325, and 348. RP