ENGINEERING & APPLIED SCIENCE (ENAS)

* ENAS 050a or b / APHY 050a or b / PHYS 050a or b, Science of Modern Technology and Public Policy
 Daniel Prober
 Examination of the science behind selected advances in modern technology and implications for public policy, with focus on the scientific and contextual basis of each advance. Topics are developed by the participants with the instructor and with guest lecturers, and may include nanotechnology, quantum computation and cryptography, renewable energy technologies, optical systems for communication and medical diagnostics, transistors, satellite imaging and global positioning systems, large-scale immunization, and DNA made to order. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program.
 SC

* ENAS 100b / APHY 100b / EPS 105b / EVST 100b / PHYS 100b, Energy, Environment, and Public Policy
 Daniel Prober
 The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non–science majors with strong backgrounds in math and science.
 QR, SC

ENAS 110b / APHY 110b, The Technological World
Owen Miller
An exploration of modern technologies that play a role in everyday life, including the underlying science, current applications, and future prospects. Examples include solar cells, light-emitting diodes (LEDs), computer displays, the global positioning system, fiber-optic communication systems, and the application of technological advances to medicine. For students not committed to a major in science or engineering; no college-level science or mathematics required. Prerequisite: high school physics or chemistry.
 QR, SC

* ENAS 118a, Introduction to Engineering, Innovation, and Design
 Vincent Wilczynski and Lawrence Wilen
 An introduction to engineering, innovation, and design process. Principles of material selection, stoichiometry, modeling, data acquisition, sensors, rapid prototyping, and elementary microcontroller programming. Types of engineering and the roles engineers play in a wide range of organizations. Lectures are interspersed with practical exercises. Students work in small teams on an engineering/innovation project at the end of the term. Priority to freshmen.
 RP

* ENAS 120b / CENG 120b / ENVE 120b, Introduction to Environmental Engineering
 John Fortner
 Introduction to engineering principles related to the environment, with emphasis on causes of problems and technologies for abatement. Topics include air and water pollution, global climate change, hazardous chemical and emerging environmental technologies. Prerequisites: high school calculus and chemistry or CHEM 161, 165 or CHEM 163, 167 (may be taken concurrently) or permission of instructor.
 QR, SC

ENAS 123a / EVST 123a, You, Your Planet, and A Sustainable Future
Aaron Dollar
This course attempts to give a holistic view of the major inter-relationships between humans and our planet, along with an examination of options for paths to a future that
is more sustainable. It seeks to be personal and practical where possible, with a strong focus on ways that individuals can make a difference in their daily lives to the pressing issues around the climate and biodiversity crises. We examine concepts primarily through simple, fundamental physical principles which help to “see the forest for the trees” without getting bogged down by complex details.

ENAS 130a or b, Introduction to Computing for Engineers and Scientists Beth Anne Bennett

An introduction to the use of the C and C++ programming languages and the software packages Mathematica and MATLAB to solve a variety of problems encountered in mathematics, the natural sciences, and engineering. General problem-solving techniques, object-oriented programming, elementary numerical methods, data analysis, and graphical display of computational results. Prerequisite: MATH 115 or equivalent. Recommended preparation: previous programming experience.

ENAS 151a or b / APHY 151a or b / PHYS 151a or b, Multivariable Calculus for Engineers Staff

An introduction to multivariable calculus focusing on applications to engineering problems. Topics include vector-valued functions, vector analysis, partial differentiation, multiple integrals, vector calculus, and the theorems of Green, Stokes, and Gauss. Prerequisite: MATH 115 or equivalent.

ENAS 194a or b / APHY 194a or b, Ordinary and Partial Differential Equations with Applications Staff

Basic theory of ordinary and partial differential equations useful in applications. First- and second-order equations, separation of variables, power series solutions, Fourier series, Laplace transforms. Prerequisites: ENAS 151 or MATH 120 or equivalent, and knowledge of matrix-based operations.

ENAS 345b / CENG 345b, Principles and Applications of Interfacial Phenomena Kyle Vanderlick

This course covers the nature and consequences of both flexible and rigid interfaces, such as those associated with liquids and solids respectively. We examine the properties of interfaces as they exist alone, as a collective (e.g., colloids), and also as they interact demonstrably with one another. Examples of the latter include thin films, confined fluids and biological membranes. An integral part of this course is the introduction and application of engineering analysis (e.g., finite element analysis) to calculate and predict behaviors central to technological applications.

ENAS 360b / ENVE 360b, Green Engineering and Sustainable Design Julie Zimmerman

Study of green engineering, focusing on key approaches to advancing sustainability through engineering design. Topics include current design, manufacturing, and disposal processes; toxicity and benign alternatives; policy implications; pollution prevention and source reduction; separations and disassembly; material and energy efficiencies and flows; systems analysis; biomimicry; and life cycle design, management, and analysis. Prerequisites: CHEM 161, 165 or 163, 167 (or CHEM 112, 113, or 114, 115), or permission of instructor.
ENAS 400a, Making it Joseph Zinter
Positioned at the intersection of design, technology, and entrepreneurship, students are introduced to the many facets of product design and development while simultaneously working to conceive and develop a marketable product and business.

ENAS 440a / MENG 440a, Applied Numerical Methods for Algebraic Systems, Eigensystems, and Function Approximation Beth Anne Bennett
The derivation, analysis, and implementation of various numerical methods. Topics include root-finding methods, numerical solution of systems of linear and nonlinear equations, eigenvalue/eigenvector approximation, polynomial-based interpolation, and numerical integration. Additional topics such as computational cost, error analysis, and convergence are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 130 or some experience with Matlab, C++, or Fortran programming. QR

ENAS 450b / APHY 450b / MENG 450b, Advanced Synchrotron Techniques and Electron Spectroscopy of Materials Charles Ahn
Introduction to concepts of advanced x-ray and electron-based techniques used for understanding the electronic, structural, and chemical behavior of materials. Students learn from world-leading experts on fundamentals and practical applications of various diffraction, spectroscopy, and microscopy methods. Course highlights the use of synchrotrons in practical experiments. Prerequisites: physics and quantum mechanics/physical chemistry courses for physical science and engineering majors, or by permission of instructor. QR, SC