MECHANICAL ENGINEERING (MENG)

* MENG 099b / MB&B 099b / MCDB 099b / PHYS 099b, Introduction to Research Methods in Physics and Biology: Preparing for a First Research Experience Simon Mochrie, Andrew Miranker, Corey O’Hern, and Megan King

Spanning both the classroom and laboratory, this seminar course provides an immersive introduction to scientific research. Students build practical laboratory skills, computational competency, and begin to build fluency in the structures and modes of communication that define modern research. The course also facilitates identification of a laboratory mentor and devising a research proposal (with mentorship) for competitive summer research fellowship applications. This class is open to first-year students, interested in any STEM major, who have no prior research experience. This course does not count toward major requirements. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program.

MENG 185a or b, Mechanical Design Staff

A course designed for potential majors in mechanical engineering, with units on design methodology, statics, mechanics of materials, and machining. Includes a design project. Prerequisite: physics at the level of PHYS 180, or permission of instructor. SC

MENG 211a or b, Thermodynamics for Mechanical Engineers Staff

Study of energy and its transformation and utilization. First and Second Laws for closed and open systems, equations of state, multicomponent nonreacting systems, auxiliary functions (H, A, G), and the chemical potential and conditions of equilibrium. Engineering devices such as power and refrigeration systems and their efficiencies. Prerequisites: PHYS 180 or 200, and MATH 115. Q8, SC RP

MENG 280a, Mechanical Engineering I: Strength and Deformation of Mechanical Elements

Elements of statics; mechanical behavior of materials; equilibrium equations, strains and displacements, and stress-strain relations. Elementary applications to trusses, bending of beams, pressure vessels, and torsion of bars. Prerequisites: PHYS 180 or 200, and MATH 115. Q8, SC RP

MENG 285a, Introduction to Materials Science

Study of the atomic and microscopic origin of the properties of engineering materials: metals, glasses, polymers, ceramics, and composites. Phase diagrams; diffusion; rates of reaction; mechanisms of deformation, fracture, and strengthening; thermal and electrical conduction. Prerequisites: elementary calculus and background in basic mechanics (deformation, Hooke’s law) and structure of atoms (orbitals, periodic table). QB, SC RP

MENG 286La or b, Solid Mechanics and Materials Science Laboratory Jan Schroers

Experiments that involve either structural mechanics or materials science. Comparisons between structural theories and experimental results. Relationships among processing, microstructure, and properties in materials science. Introduction to techniques for the examination of the structure of materials. SC RP ½ Course cr

* MENG 325a, Machine Elements and Manufacturing Processes Joran Booth

This course provides students a working knowledge of two fundamental topics related to mechanical design: machine elements and manufacturing processes. Machine elements refer one or more of a range of common design elements that transmit power and enable smooth and efficient motion in mechanical systems with moving parts. This course introduces the most common of these elements and gives students the tools to systems design with them. Topics include common linkages, gearing, bearings, springs, clutches, brakes, and common actuators such as DC motors. Manufacturing processes are necessary for the mechanical design engineer to effectively perform her or his duties; they provide an understanding of how the parts and systems that they design are fabricated, allowing “Design for Manufacturing” principles to be taken into account in the product development process. Students learn the basics of common commercial manufacturing processes for mechanical systems, including low-volume processes such as machining to high-volume processes such as casting (metal parts), molding (plastic parts), and stamping (sheet metal parts). Prerequisites: Extensive CAD experience. MENG 185 and MENG 280 recommended.

MENG 361a, Mechanical Engineering II: Fluid Mechanics Mitchell Smooke

Mechanical properties of fluids, kinematics, Navier-Stokes equations, boundary conditions, hydrostatics, Euler’s equations, Bernoulli’s equation and applications, momentum theorems and control volume analysis, dimensional analysis and similitude, pipe flow, turbulence, concepts from boundary layer theory, elements of potential flow. Prerequisites: ENAS 194 or equivalent, and physics at least at the level of PHYS 180. QR, SC RP

* MENG 363Lb, Fluid Mechanics and Thermodynamics Laboratory Alessandro Gomez

Hands-on experience in applying the principles of fluid mechanics and thermodynamics. Integration of experiment, theory, and simulation to reflect real-world phenomena. Students design and test prototype devices. Prerequisites: MENG 211 and 361. WR, SC RP

MENG 383a, Mechanical Engineering III: Dynamics Corey O’Hern

Kinematics and dynamics of particles and systems of particles. Relative motion; systems with constraints. Rigid body mechanics; gyroscopes. Prerequisites: PHYS 180 or 200, and MATH 120 or ENAS 151. QR, SC

MENG 389b, Mechanical Engineering IV: Fluid and Thermal Energy Science Juan de la Mora

Fundamentals of mechanical engineering applicable to the calculation of energy and power requirements, as well as transport of heat by conduction, convection, and radiation. Prerequisites: MENG 211, 361, and ENAS 194; or permission of instructor. Q8, SC
MENG 390b, Mechatronics Laboratory
Madhusudhan Venkadesan
Hands-on synthesis of control systems, electrical engineering, and mechanical engineering. Review of Laplace transforms, transfer functions, software tools for solving ODEs. Review of electronic components and introduction to electronic instrumentation. Introduction to sensors; mechanical power transmission elements; programming microcontrollers; PID control. Prerequisites: ENAS 194 or equivalent, ENAS 130, and EENG 200; or permission of instructor.

MENG 400a or b, Computer-Aided Engineering
Staff
Aspects of computer-aided design and manufacture (CAD/CAM). The computer’s role in the mechanical design and manufacturing process; commercial tools for two- and three-dimensional drafting and assembly modeling; finite-element analysis software for modeling mechanical, thermal, and fluid systems. Prerequisite: ENAS 130 or permission of instructor.

MENG 403a, Introduction to Nanomaterials and Nanotechnology
Judy Cha
Survey of nanomaterial synthesis methods and current nanotechnologies. Approaches to synthesizing nanomaterials; characterization techniques; device applications that involve nanoscale effects. Prerequisites: ENAS 194 and MENG 285, or permission of instructor.

MENG 404b / BENG 404b, Medical Device Design and Innovation
Daniel Wiznia and Steven Tommasini
The engineering design, project planning, prototype creation, and fabrication processes for medical devices that improve patient conditions, experiences, and outcomes. Students develop viable solutions and professional-level working prototypes to address clinical needs identified by practicing physicians. Some attention to topics such as intellectual property, the history of medical devices, documentation and reporting, and regulatory affairs.

MENG 440a / ENAS 440a, Applied Numerical Methods for Algebraic Systems, Eigensystems, and Function Approximation
Beth Anne Bennett
The derivation, analysis, and implementation of various numerical methods. Topics include root-finding methods, numerical solution of systems of linear and nonlinear equations, eigenvalue/eigenvector approximation, polynomial-based interpolation, and numerical integration. Additional topics such as computational cost, error analysis, and convergence are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 130 or some experience with Matlab, C++, or Fortran programming.

MENG 464b, Forces on the Nanoscale
Udo Schwarz
Modern materials science often exploits the fact that atoms located at surfaces or in thin layers behave differently from bulk atoms to achieve new or greatly altered material properties. The course provides an in-depth discussion of intermolecular and surface forces, which determine the mechanical and chemical properties of surfaces. In the first part, we discuss the fundamental principles and concepts of forces between atoms and molecules. Part two generalizes these concepts to surface forces. Part three then gives a variety of examples. The course is of interest to students studying thin-film growth, surface coatings, mechanical and chemical properties of surfaces, soft matter including biomembranes, and colloidal suspensions. Some knowledge of basic physics, mathematics, chemistry, and thermodynamics is expected.

MENG 469a, Aerodynamics
Juan de la Mora
Review of fluid dynamics. Inviscid flows over airfoils; finite wing theory; viscous effects and boundary layer theory. Compressible aerodynamics: normal and oblique shock waves and expansion waves. Linearized compressible flows. Some basic knowledge of thermodynamics is expected. Prerequisite: MENG 361 or permission of instructor.

MENG 471a and MENG 472b, Special Projects I
Madhusudhan Venkadesan
Faculty-supervised one- or two-person projects with emphasis on research (experiment, simulation, or theory), engineering design, or tutorial study. Students are expected to consult the course instructor, director of undergraduate studies, and/or appropriate faculty members to discuss ideas and suggestions for topics. Focus on development of professional skills such as writing abstracts, prospectuses, and technical reports as well as good practices for preparing posters and delivering presentations. Permission of advisor and director of undergraduate studies is required. Students are required to attend a 75-minute section once per week.

MENG 473a and MENG 474b, Special Projects II
Madhusudhan Venkadesan
Faculty-supervised one- or two-person projects with emphasis on research (experiment, simulation, or theory), engineering design, or tutorial study. Students are expected to consult the course instructor, director of undergraduate studies, and/or appropriate faculty members to discuss ideas and suggestions for topics. These courses may be taken at any time during the student’s career and may be taken more than once. Prerequisites: MENG 471 or 472; permission of adviser and director of undergraduate studies.

MENG 487La / MENG 488Lb, Mechanical Design: Process and Implementation
Joran Booth
This course is the first half of the capstone design sequence (students take MENG 488 in the spring semester of the same academic year) and is a unique opportunity to apply and demonstrate broad and detailed knowledge of engineering in a team effort to design, construct, and test a functioning engineering system. The lecture portion of the class provides guidance in planning and managing your project, as well other topics associated with engineering design. This course sequence requires quality design; analyses and experiments to support
the design effort; and the fabrication and testing of the engineered system; as well as proper documentation and presentation of results to a technical audience. Prerequisites: MENG 280 and MENG 361. MENG 185 and MENG 325 are strongly suggested. ½ Course cr

MENG 488Lb / MENG 487La, Mechanical Design: Process and Implementation II Joran Booth
This course is the second half of the capstone design sequence (students take MENG 487 in the fall semester of the same academic year) and is a unique opportunity to apply and demonstrate broad and detailed knowledge of engineering in a team effort to design, construct, and test a functioning engineering system. The lecture portion of the class provides guidance in planning and managing your project, as well other topics associated with engineering design. This course sequence requires quality design; analyses and experiments to support the design effort; and the fabrication and testing of the engineered system; as well as proper documentation and presentation of results to a technical audience. Prerequisites: MENG 487, MENG 280, and MENG 361. MENG 185 and MENG 325 are strongly suggested. ½ Course cr