NEUROSCIENCE (NSCI)

NSCI 141a / PSYC 141a, The Criminal Mind Arielle Baskin-Sommers
Theoretical and empirical study of the development of criminal behavior, including constitutional, social, and neurobiological elements. Personality and psychopathological factors associated with criminal behavior; theoretical and psychobiological explanations of crime; the biological/environment interaction; the impact of psychobiological models for policy and intervention.

NSCI 160a / PSYC 160a, The Human Brain Gregory McCarthy
Introduction to the neural bases of human psychological function, including social, cognitive, and affective processing. Preparation for more advanced courses in cognitive and social neuroscience. Topics include memory, reward processing, neuroeconomics, individual differences, emotion, social inferences, and clinical disorders. Neuroanatomy, neurophysiology, and neuropharmacology are also introduced.

* NSCI 258b / PSYC 258b, Computational Methods in Human Neuroscience Nick Turk-Browne
This course provides training on how to use computational science for the advanced analysis of brain imaging data, primarily from functional magnetic resonance imaging (fMRI). Topics include scientific programming, high-performance computing, machine learning, network/graph analysis, real-time neurofeedback, nonparametric statistics, and functional alignment. Prerequisites: CPSC 100, CPSC 112 or other course involving terminal commands and programming (Python preferred); course in statistics and/or data science; PSYC 160 or other human neuroscience course; or permission of instructor.

* NSCI 270a / PSYC 270a, Research Methods in Cognitive Neuroscience
This course introduces methods used by cognitive neuroscientists to discover the structural and functional features of the nervous system. A combination of lectures and hands-on lab activities help students understand the structure and function of the human brain.

NSCI 320a / MCDB 320a, Neurobiology Haig Keshishian and Paul Forscher
The excitability of the nerve cell membrane as a starting point for the study of molecular, cellular, and systems-level mechanisms underlying the generation and control of behavior. Prerequisites: year of college-level chemistry; a course in physics is strongly recommended.

NSCI 321La / MCDB 321La, Laboratory for Neurobiology Haig Keshishian and Paul Forscher
Introduction to the neurosciences. Projects include the study of neuronal excitability, sensory transduction, CNS function, synaptic physiology, and neuroanatomy. Concurrently with or after MCDB 320.

NSCI 324a / BENG 230a / MB&B 330a / MCDB 330a, Modeling Biological Systems I Thierry Emonet and Kathryn Miller-Jensen
Biological systems make sophisticated decisions at many levels. This course explores the molecular and computational underpinnings of how these decisions are made, with a focus on modeling static and dynamic processes in example biological systems. This course is aimed at biology students and teaches the analytic and computational methods needed to model genetic networks and protein signaling pathways. Students present and discuss original papers in class. They learn to model using MatLab in a series of in-class hackathons that illustrate the biological examples discussed in the lectures. Biological systems and processes that are modeled include: (i) gene expression, including the kinetics of RNA and protein synthesis and degradation; (ii) activators and repressors; (iii) the lysogeny/lysis switch of lambda phage; (iv) network motifs and how they shape response dynamics; (v) cell signaling, MAP kinase networks and cell fate decisions; and (vi) noise in gene expression. Prerequisites: MATH 115 or 116. BIOL 101-104, or with permission of instructors. This course also benefits students who have taken more advanced biology courses (e.g. MCDB 200, MCDB 310, MB&B 300/301).

NSCI 325b / BENG 465b / MB&B 361b / MCDB 361b, Modeling Biological Systems II Joe Howard, Thierry Emonet, and Jing Yan
Advanced topics related to dynamical processes in biological systems. Processes by which cells compute, count, tell time, oscillate, and generate spatial patterns. Time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form. Comparisons between models and experimental data. Dynamical models applied to neurons, neural systems, and cellular biophysical processes. Use of MATLAB to create models. Prerequisite: MCDB 330 or equivalent, or a 200-level biology course, or with permission of instructor.

NSCI 352a / CGSC 352a / PSYC 352a, Arrested or Adaptive Development of the Adolescent Brain BJ Casey
Study of empirical and theoretical accounts of adolescent-specific changes in the brain and in behavior that relate to the development of self-control. Discussions will focus on adaptive and arrested adolescent brain development in the context of relevant legal, social, and health policy issues.

NSCI 355b / PSYC 355b, Social Neuroscience Molly Crockett
Exploration of the psychological and neural mechanisms that enable the formation, maintenance, and dissolution of social relationships. Topics include the neuroscience of how we form impressions and decide whether to instigate relationships with others; how we build relationships through trust, cooperation, attachment, conflict, and reconciliation; and group-level processes including intergroup bias, moral judgment, and decision making. Prerequisite: PSYC 110 or permission of instructor.

* NSCI 441a / PSYC 438a, Computational Models of Human Behavior
Why do we do the things we do? How do we adapt to changes in the environment? And how does our happiness depend on our choices and what happens to us? How can computational models help us to gain new insights into psychological processes? The goal of this course is to use computational models to understand human behavior and its relationship to our emotions. Data is collected in a variety of
tasks including new experiments designed by students, and is analyzed using computational models. CPSC 112 or other course involving programming (e.g., C++, Java, Python, Matlab), or permission of instructor. SC

* NSCI 442a / PSYC 428a, Neuroscience of Decision-Making Molly Crockett
An overview and examination of the neuroscience of decision making. Interdisciplinary course highlighting research from cognitive neuroscience, psychology, behavioral economics, finance, marketing, computer science, and public health. Topics include utility and value, reinforcement learning, risky decision making, impulsivity and self control, social decision making, psychopathology, and commercial applications (e.g., neuromarketing and neurofinance). Permission of the instructor. SC

* NSCI 455b / PSYC 432b, Under Pressure: The Psychology of Stress Dylan Gee
Stress is pervasive in everyday life. Why do humans experience stress, and what causes stress in today’s society? How does stress affect the ways we think, feel, and behave? Why are some people particularly susceptible to the effects of stress on mental and physical health? What factors can buffer against the consequences of stress, and how can we leverage stress management techniques to effectively cope with stress? This course draws from psychological, neurobiological, social, developmental, and clinical perspectives to address these questions. In addition to an in-depth study of theory, research, and intervention in the field of stress, this seminar is designed to translate scientific advances to help students learn how to more effectively manage stress in their own lives. Priority given to juniors and seniors. Prerequisites: There are no formal prerequisites for the course, but one of the following is strongly recommended: PSYC 110, PSYC 160, PSYC 230, PSYC 335, PSYC 352, or PSYC 376. SO

* NSCI 470a and NSCI 471b, Independent Research Nick Turk-Browne and Damon Clark
Research project under faculty supervision taken Pass/Fail; does not count toward the major, but does count toward graduation requirements. Students are expected to spend approximately ten hours per week in the laboratory. A final research report and/or presentation is required by end of term. Students who take this course more than once must reapply each term. To register, students must submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the end of the first week of class. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.

* NSCI 480a and NSCI 481b, Senior Non-empirical Research Nick Turk-Browne and Damon Clark
Research survey under faculty supervision fulfills the senior requirement for the B.A. degree and awards a letter grade. For NSCI seniors only (and second term juniors with DUS permission). Students are expected to conduct a literature review, to complete written assignments, and to present their research once in either the fall or spring term. Students are encouraged to pursue the same research project for two terms. The final research paper is due in the hands of the sponsoring faculty member, with a copy submitted to the department, by the stated deadline near the end of the term. To register, students submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the end of the first week of classes. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.

* NSCI 490a and NSCI 491b, Senior Empirical Research Nick Turk-Browne and Damon Clark
Laboratory or independent empirical research project under faculty supervision to fulfill the senior requirement for the B.S. degree. For NSCI seniors only (and second term juniors with DUS permission); this course awards a letter grade. Students are expected to spend at least ten hours per week in the laboratory, to complete written assignments, and to present their research once in either the fall or the spring term. Written assignments include a short research proposal summary due at the beginning of the term and a full research report due at the end of the term. Students are encouraged to pursue the same research project for two terms, in which case, the first term research report and the second term proposal summary may be combined into a full research proposal due at the end of the first term. Final papers are due by the stated deadline. Students should reserve a research laboratory during the term preceding the research. To register, students must submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the end of the first week of classes. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.

* NSCI 492a, Senior Empirical Research Seminar Nick Turk-Browne and Damon Clark
This course provides exposure to the primary scientific literature in neuroscience, from molecules, cells, and circuits, to systems, cognition, and behavior. The focus is on understanding how research is conducted in each of these areas, including identifying open questions and hypotheses, designing experiments, methods for collecting and analyzing data, and interpreting the results theoretically. This course fulfills one empirical research credit and must be followed in the Spring by NSCI 491 for the BS degree or NSCI 481 for the BA degree. Only seniors in the Neuroscience major who are not enrolled in NSCI 480 or 490 are eligible to enroll. SC