PHYSICS (PHYS)

* PHYS 040a / ASTR 040a, Expanding Ideas of Time and Space Meg Urry
Discussions on astronomy, and the nature of time and space. Topics include the shape and contents of the universe, special and general relativity, dark and light matter, and dark energy. Observations and ideas fundamental to astronomers’ current model of an expanding and accelerating four-dimensional universe. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program. SC

* PHYS 050a or b / APHY 050a or b / ENAS 050a or b, Science of Modern Technology and Public Policy Daniel Prober
Examination of the science behind selected advances in modern technology and implications for public policy, with focus on the scientific and contextual basis of each advance. Topics are developed by the participants with the instructor and with guest lecturers, and may include nanotechnology, quantum computation and cryptography, renewable energy technologies, optical systems for communication and medical diagnostics, transistors, satellite imaging and global positioning systems, large-scale immunization, and DNA made to order. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program. SC

* PHYS 099b / MB&B 099b / MCDB 099b / MENG 099b / SCIE 099b, Introduction to Research Methods in Physics and Biology: Preparing for a First Research Experience Staff
Spanning both the classroom and laboratory, this seminar course provides an immersive introduction to scientific research. Students build practical laboratory skills, computational competency, and begin to build fluency in the structures and modes of communication that define modern research. The course also facilitates identification of a laboratory mentor and devising a research proposal (with mentorship) for competitive summer research fellowship applications. This class is open to first-year students, interested in any STEM major, who have no prior research experience. This course does not count toward major requirements. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program.

* PHYS 100b / APHY 100b / ENAS 100b / EPS 105b / EVST 100b, Energy, Environment, and Public Policy Daniel Prober
The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non–science majors with strong backgrounds in math and science. QR, SC

* PHYS 105a / HIST 291Ja / HSHM 482a, Electromagnetism: Physics, Magic, Religion Alison Sweeney and Paola Bertucci
Electromagnetism is a foundational topic in scientific education. Its laws are crucial milestones for students interested in the hard as well as the life sciences; however, these topics can be challenging to learn and teach in our modern context of ubiquitous, miniaturized electronics. In contrast, in the nineteenth century, when most electromagnetic laws were codified, electromagnetism was anything but a dry science. The then-novel phenomena seemed to offer physical reality to occult practices and religious beliefs. This seminar offers scientific content in historical context. Students
learn the physical theories of electromagnetism while entering the world of Victorian science and its paradoxes.

* PHYS 120b, Quantum Physics and Beyond
Staff
Current topics in modern physics, beginning with quantum physics and continuing through subatomic physics, special and general relativity, cosmology, astrophysics, and string theory.

PHYS 151a or b / APHY 151a or b / ENAS 151a or b, Multivariable Calculus for Engineers
Staff
An introduction to multivariable calculus focusing on applications to engineering problems. Topics include vector-valued functions, vector analysis, partial differentiation, multiple integrals, vector calculus, and the theorems of Green, Stokes, and Gauss. Prerequisite: MATH 115 or equivalent.

PHYS 165La and PHYS 166Lb, General Physics Laboratory
Staff
A variety of individually self-contained experiments are roughly coordinated with the lectures in PHYS 170, 171, and 180, 181 and illustrate and develop physical principles covered in those lectures.

PHYS 170a and PHYS 171b, University Physics for the Life Sciences
Staff
An introduction to classical physics with special emphasis on applications drawn from the life sciences and medicine. Fall-term topics include vectors and kinematics, Newton’s laws, momentum, energy, random walks, diffusion, fluid mechanics, mathematical modeling, and statistical mechanics. Spring-term topics include oscillations, waves, sound, electrostatics, circuits, Maxwell’s equations, electromagnetic waves, gene circuits, and quantum mechanics. Essential mathematics are introduced and explained as needed. Completion of MATH 112 or equivalent is prerequisite for PHYS 170. Completion of PHYS 170 is a prerequisite for PHYS 171. MATH 116 (or MATH 115) is recommended prior to or concurrently with PHYS 171.

PHYS 180a and PHYS 181b, University Physics
Staff
A broad introduction to classical and modern physics for students who have some previous preparation in physics and mathematics. Fall-term topics include Newtonian mechanics, gravitation, waves, and thermodynamics. Spring-term topics include electromagnetism, special relativity, and quantum physics. Concurrently with MATH 115 and 120 or equivalents. See comparison of introductory sequences and laboratories in the YCPS. May not be taken for credit after PHYS 170, 171.

PHYS 200a and PHYS 201b, Fundamentals of Physics
Staff
A thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis on problem solving and quantitative reasoning. Fall-term topics include Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves. Spring-term topics include electromagnetism, geometrical and physical optics, and elements of quantum mechanics. Prerequisite: MATH 115 or equivalent. MATH 210 and either MATH 225 or MATH 222, are generally taken concurrently. See comparison of introductory sequences and laboratories in the YCPS.

PHYS 205a or b and PHYS 206a or b, Modern Physical Measurement
Staff
A two-term sequence of experiments in classical and modern physics for students who plan to major in Physics. In the first term, the basic principles of mechanics, electricity,
and magnetism are illustrated in experiments designed to make use of computer data handling and teach error analysis. In the second term, students plan and carry out experiments illustrating aspects of wave and quantum phenomena and of atomic, solid state, and nuclear physics using modern instrumentation. May be begun in either term.

PHYS 260a and PHYS 261b, Intensive Introductory Physics
Staff
An introduction to major branches of physics—classical and relativistic mechanics; gravitation; electricity and magnetism; and quantum physics, information, and computation—at a sophisticated level. For students majoring in the physical sciences, mathematics, and philosophy whose high school training included both mechanics and electricity and magnetism at the typical college/AP level and have excellent training in, and a flair for, mathematical methods and quantitative analysis. Concurrently with MATH 120, ENAS 151, PHYS 151, or PHYS 301, or equivalent. Students considering an alternative MATH course should check with the DUS in Physics.

PHYS 295a / ASTR 255a, Research Methods in Astrophysics
Hector Arce
An introduction to research methods in astronomy and astrophysics. The acquisition and analysis of astrophysical data, including the design and use of ground- and space-based telescopes, computational manipulation of digitized images and spectra, and confrontation of data with theoretical models. Examples taken from current research at Yale and elsewhere. Use of the Python programming language. Prerequisite: background in high school calculus and physics. No previous programming experience required.

PHYS 301a, Introduction to Mathematical Methods of Physics
Simon Mochrie
Topics include multivariable calculus, linear algebra, complex variables, vector calculus, and differential equations. Designed to give accelerated access to 400-level courses by providing, in one term, the essential background in mathematical methods. Recommended to be taken concurrently with PHYS 401 or 410. Prerequisite: PHYS 170, 171, or 180, 181, or 200, 201, or 260, 261, or permission of instructor.

PHYS 343a / ASTR 343a, Gravity, Astrophysics, and Cosmology
Daisuke Nagai
Introduction to frontier areas of research in astrophysics and cosmology exploring ideas and methods. In-depth discussion of the physics underlying several recent discoveries including extrasolar planets—their discovery, properties, and issues of habitability; black holes—prediction of their properties from GR, observational signatures, and detection; and the accelerating universe—introduction to cosmological models and the discovery of dark energy. Prerequisites: PHYS 170, 171, or 180, 181, or 200, 201, or 260, 261, or permission of instructor.

PHYS 345b, Introduction to Quantum Information Processing and Communication
Staff
This course is intended for undergraduate physics, chemistry, engineering, computer science, statistics and data science, and mathematics majors seeking an introduction to quantum information science. There is now a second quantum revolution underway and a world-wide race to build powerful new types of computers based on quantum principles, and to develop new techniques for encrypted communication whose security is guaranteed by the laws of quantum mechanics. The approach of this course to these topics will strip away much of the traditional physics details to focus on the information content of quantum systems, the nature of measurement, and why the
true randomness of certain measurement results can be a feature rather than a bug. We learn what it means for a quantum bit (‘qubit’) to be simultaneously 0 and 1 (in some sense). We learn about quantum entanglement and the associated ‘spooky action at a distance’ that convinced Einstein that the quantum theory must be wrong. Ironically, this bizarre effect is now used on a daily basis to prove that quantum mechanics is indeed correct and used as a routine engineering test to make sure that quantum computers are working properly and are truly quantum. Specific topics include: the mathematical representation of quantum states as complex vectors, the superposition principle, entanglement and Bell inequalities, quantum gates and algorithms for quantum computers, quantum error correction, dense coding, teleportation, and secure quantum communication. Students learn to do problem sets based on programming and operating publicly-accessible cloud-based quantum computers. See for example: https://www.ibm.com/quantum-computing/. Familiarity with complex numbers and the basics of linear algebra (matrices, determinants, eigenvectors and eigenvalues) is assumed. Prior exposure to basic probability and statistics, as well as a course in quantum mechanics are useful but not required.

PHYS 353a / BENG 353a, Introduction to Biomechanics Michael Murrell
An introduction to the biomechanics used in biosolid mechanics, biofluid mechanics, biothermomechanics, and biochemomechanics. Diverse aspects of biomedical engineering, from basic mechanobiology to the design of novel biomaterials, medical devices, and surgical interventions. Prerequisites: PHYS 180, 181, MATH 115, and ENAS 194. QR 0 Course cr

* **PHYS 378b, Introduction to Scientific Computing & Data Science** Daisuke Nagai
This course introduces students to essential computational and data analysis methods and tools and their problem-solving applications. These are skills and knowledge essential for beginning research in the sciences, and are not typically taught in an introductory physics curriculum. The goal here is not completeness across any of these areas, but instead the introduction of the most important and useful skills, concepts, methods, techniques, tools and relevant knowledge for getting started in research in physics. Key learning goals include basic programming in Python, data analysis, modeling, simulations and machine learning, and their applications to problems in physics and beyond. Prerequisites: Introductory physics and familiarity with single variable calculus (basic integration, differentiation, Taylor series, etc). Previous experience in Python programming is not required. Contact instructor if you are unsure about your preparation. sc

* **PHYS 382Lb, Advanced Physics Laboratory** Staff
Laboratory experiments with some discussion of theory and techniques. An advanced course focusing on modern experimental methods and concepts in atomic, optical, nuclear, and condensed matter physics. Intended to prepare students for independent research. For majors in the physical sciences. After or concurrently with PHYS 439 or 440, or with permission of instructor. PHYS 206L WR, sc

PHYS 401a and PHYS 402b, Advanced Classical Physics from Newton to Einstein Staff
Advanced physics as the field developed from the time of Newton to the age of Einstein. Topics include mechanics, electricity and magnetism, statistical physics, and thermodynamics. The development of classical physics into a "mature" scientific discipline, an idea that was subsequently shaken to the core by the revolutionary
discoveries of quantum physics and relativity. Prerequisite: PHYS 170, 171, or 180, 181, or 200, 201, or 260, 261. Concurrently with PHYS 301 or other advanced mathematics course. QR, SC

PHYS 410a, Classical Mechanics Steven Girvin
An advanced treatment of mechanics, with a focus on the methods of Lagrange and Hamilton. Lectures and problems address the mechanics of particles, systems of particles, and rigid bodies, as well as free and forced oscillations. Introduction to chaos and special relativity. Prerequisite: PHYS 170, 171, or 180, 181, or 200, 201, or 260, 261. Concurrently with PHYS 301 or other advanced mathematics course. QR, SC

PHYS 412a, Relativity Vincent Moncrief
This course covers special relativity and an introduction to general relativity. A thorough treatment of special relativity, stressing equally conceptual understanding and certain formal aspects. Introduction to general relativity covers curved spaces, Einstein's equations, and some of their solutions. Prerequisite: PHYS 401 or PHYS 410. QR, SC

PHYS 420a / APHY 420a, Thermodynamics and Statistical Mechanics Nicholas Read
This course is subdivided into two topics. We study thermodynamics from a purely macroscopic point of view and then we devote time to the study of statistical mechanics, the microscopic foundation of thermodynamics. Prerequisites: PHYS 301, 410, and 440 or permission of instructor. QR, SC

PHYS 428a / AMTH 428a / E&EB 428a / EPS 428a, Science of Complex Systems Jun Korenaga
Introduction to the quantitative analysis of systems with many degrees of freedom. Fundamental components in the science of complex systems, including how to simulate complex systems, how to analyze model behaviors, and how to validate models using observations. Topics include cellular automata, bifurcation theory, deterministic chaos, self-organized criticality, renormalization, and inverse theory. Prerequisite: PHYS 301, MATH 247, or equivalent. QR, SC

PHYS 430b, Electromagnetic Fields and Optics Staff
Electrostatics, magnetic fields of steady currents, electromagnetic waves, and relativistic dynamics. Provides a working knowledge of electrodynamics. Prerequisites: PHYS 301 and 410 or equivalents. QR, SC

PHYS 439a / APHY 439a, Basic Quantum Mechanics Peter Rakich
The basic concepts and techniques of quantum mechanics essential for solid-state physics and quantum electronics. Topics include the Schrödinger treatment of the harmonic oscillator, atoms and molecules and tunneling, matrix methods, and perturbation theory. Prerequisites: PHYS 181 or 201, PHYS 301, or equivalents, or permission of instructor. QR, SC

PHYS 440a or b, Quantum Mechanics and Natural Phenomena I Staff
The first term of a two-term sequence covering principles of quantum mechanics with examples of applications to atomic physics. The solution of bound-state eigenvalue problems, free scattering states, barrier penetration, the hydrogen-atom problem, perturbation theory, transition amplitudes, scattering, and approximation techniques. Prerequisite: PHYS 410 or 401. QR, SC
PHYS 441a, Quantum Mechanics and Natural Phenomena II Steve Lamoreaux
Continuation of PHYS 440. Prerequisite: PHYS 440 and either PHYS 430 or
permission of the instructor. QR, SC

PHYS 442b, Introduction to Nuclear and Elementary Particle Physics Staff
Fundamental concepts in nuclear and particle physics, including the discovery of
radioactivity, the Dirac equation, antimatter, Feynman diagrams, hadron resonances,
quarks and gluons, fundamental symmetries, the weak interaction, beta decay, quantum
chromodynamics, neutrino oscillation, unification, and particle theories for dark matter.
Prerequisite: two term courses in quantum mechanics. QR, SC

PHYS 448a / APHY 448a, Solid State Physics I Sohrab Ismail-Beigi
The first term of a two-term sequence covering the principles underlying the electrical,
thermal, magnetic, and optical properties of solids, including crystal structure,
phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonances, phase
transitions, dielectrics, magnetic materials, and superconductors. Prerequisites: APHY
322, 439, PHYS 420. QR, SC

PHYS 449b / APHY 449b, Solid State Physics II Yu He
The second term of the sequence described under APHY 448. QR, SC

PHYS 458a / APHY 458a, Principles of Optics with Applications Hui Cao
Introduction to the principles of optics and electromagnetic wave phenomena with
applications to microscopy, optical fibers, laser spectroscopy, and nanostructure
physics. Topics include propagation of light, reflection and refraction, guiding light,
polarization, interference, diffraction, scattering, Fourier optics, and optical coherence.
Prerequisite: PHYS 430. QR, SC

PHYS 460a, Mathematical Methods of Physics Keith Baker
Survey of mathematical techniques useful in physics. Physical examples illustrate
vector and tensor analysis, group theory, complex analysis (residue calculus, method of
steepest descent), differential equations and Green’s functions, and selected advanced
topics. Prerequisite: PHYS 301 or other advanced mathematics course. QR

* PHYS 469a and PHYS 470b, Independent Research in Physics Staff
Each student works on an independent project under the supervision of a member
of the faculty or research staff. Students participate in a series of seminar meetings
in which they present a talk on their project or research related to it. A written report
is also required. For students with a strong background in physics coursework. This
course may be taken multiple times for pass/fail credit. Suggested for first years and
sophomores.

* PHYS 471a and PHYS 472b, Independent Projects in Physics Staff
Each student works on an independent project under the supervision of a member
of the faculty or research staff. Students participate in a series of seminar meetings in
which they present a talk on their project or research related to it. A written report is
also required. Registration is limited to junior and senior physics majors. This course
may be taken up to four times for a letter grade.