STATISTICS AND DATA SCIENCE (S&DS)

S&DS 100b, Introductory Statistics Ethan Meyers
An introduction to statistical reasoning. Topics include numerical and graphical summaries of data, data acquisition and experimental design, probability, hypothesis testing, confidence intervals, correlation and regression. Application of statistical concepts to data; analysis of real-world problems. May not be taken after S&DS 101–106 or 109. QR

S&DS 101a / E&EB 210a, Introduction to Statistics: Life Sciences Walter Jetz and Jonathan Reuning-Scherer
Statistical and probabilistic analysis of biological problems, presented with a unified foundation in basic statistical theory. Problems are drawn from genetics, ecology, epidemiology, and bioinformatics. QR

Statistical analysis of politics, elections, and political psychology. Problems presented with reference to a wide array of examples: public opinion, campaign finance, racially motivated crime, and public policy. QR

Descriptive and inferential statistics applied to analysis of data from the social sciences. Introduction of concepts and skills for understanding and conducting quantitative research. QR

S&DS 105a, Introduction to Statistics: Medicine Ethan Meyers and Jonathan Reuning-Scherer
Statistical methods used in medicine and medical research. Practice in reading medical literature competently and critically, as well as practical experience performing statistical analysis of medical data. QR

S&DS 106a, Introduction to Statistics: Data Analysis Elena Khusainova and Jonathan Reuning-Scherer
An introduction to probability and statistics with emphasis on data analysis. QR

Introductory statistical concepts beyond those covered in high school AP statistics. Includes additional concepts in regression, an introduction to multiple regression, ANOVA, and logistic regression. This course is intended as a bridge between AP statistics and courses such as S&DS 230, Data Exploration and Analysis. Meets for the second half of the term only. Prerequisites: A previous statistics course in high school. May not be taken after S&DS 100, S&DS 101–106, PSYC 100, or any other full semester Yale introductory statistics courses. Students should consider S&DS 103 or both S&DS 108, 109. ½ Course cr

General concepts and methods in statistics. Meets for the first half of the term only. May not be taken after S&DS 100 or 101–106. ½ Course cr

S&DS 110b, An Introduction to R for Statistical Computing and Data Science Jay Emerson
Introduction to R language, widely-accepted for advanced statistical computing and graphics, used by the data science industry as well as in a wide range of academic disciplines. It is a useful complement (concurrently or in advance) to many courses in S&DS. No prior experience with R is necessary. Meets for the first half of the term only. ½ Course cr

S&DS 123b / CPSC 123b / PLSC 351b / S&DS 532b, YData: An Introduction to Data Science John Lafferty and Elena Khusainova
Computational, programming, and statistical skills are no longer optional in our increasingly data-driven world; these skills are essential for opening doors to manifold research and career opportunities. This course aims to dramatically enhance knowledge and capabilities in fundamental ideas and skills in data science, especially computational and programming skills along with inferential thinking. YData is an introduction to Data Science that emphasizes the development of these skills while providing opportunities for hands-on experience and practice. YData is accessible to students with little or no background in computing, programming, or statistics, but is also engaging for more technically oriented students through extensive use of examples and hands-on data analysis. Python 3, a popular and widely used computing language, is the language used in this course. The computing materials will be hosted on a special purpose web server. QR

* S&DS 150b, Data Science Ethics Elisa Celis
In this course, we introduce, discuss, and analyze ethical issues, algorithmic challenges, and policy decisions that arise when addressing real-world problems via the lens of data science. We grapple with the normative questions of what constitutes bias, fairness, discrimination, or ethics when it comes to data science and machine learning in applications such as policing, health, journalism, and employment. We incorporate technical precision by introducing quantitative measures that allow us to study how algorithms codify, exacerbate and/or introduce biases of their own, and study analytic methods of correcting for or eliminating these biases. Lastly, we study the social implications of these decisions, and understand the legal, political and policy decisions that could be used to govern data-driven decision making by making them transparent and auditable. We read critical commentary by practitioners, state-of-the-art technical papers by data scientist and computer scientists, and samples of legal scholarship, moral and ethical philosophy, readings in sociology, and policy documents. We often ground our discussions around recent case studies, controversies, and current events. Prerequisites: One from S&DS 238, S&DS 241, S&DS 242, or the equivalent; and one from S&DS 230, ECON 131, or the equivalent. Suggested courses: one from: CPSC 470, S&DS 365, ECON 429, CPSC 365, CPSC 366, or equivalent; and one from: EP&E 215, PHIL 175, PHIL 177, SOCY 144, PLSC 262, PLSC 320, or equivalent. so
* S&DS 160b / AMTH 160b / MATH 160b, The Structure of Networks Ronald Coifman
Network structures and network dynamics described through examples and applications ranging from marketing to epidemics and the world climate. Study of social and biological networks as well as networks in the humanities. Mathematical graphs provide a simple common language to describe the variety of networks and their properties. QR

* S&DS 172b, YData: Analysis of Baseball Data Ethan Meyers
The fields of data science aim to extract insights from large data sets that often contain random variation. Baseball is a game that contains a high degree of randomness, and because professional baseball has been played since the 19th century, a large amount of data has been collected about players' performance. In this class we use baseball data to understand key concepts in data science including data visualization, data wrangling, and statistical inference. To understand these concepts, we analyze data include season-level statistics going back to the 1870’s, play-by-play statistics going back to the 1930’s and pitch trajectory statistics going back to 2006. The course uses the Python programming language and is paced to be accessible to students who have previously taken or are currently enrolled in S&DS 123. QR

S&DS 220b, Introductory Statistics, Intensive Joseph Chang
Introduction to statistical reasoning for students with particular interest in data science and computing. Using the R language, topics include exploratory data analysis, probability, hypothesis testing, confidence intervals, regression, statistical modeling, and simulation. Computing taught and used extensively, as well as application of statistical concepts to analysis of real-world data science problems. MATH 115 is helpful but not required. While no particular prior experience in computing is required, strong motivation to practice and learn computing is desirable. QR

S&DS 230a or b / S&DS S230E, Data Exploration and Analysis Staff
Survey of statistical methods: plots, transformations, regression, analysis of variance, clustering, principal components, contingency tables, and time series analysis. The R computing language and Web data sources are used. Prerequisite: a 100-level Statistics course or equivalent, or with permission of instructor. QR

S&DS 238a, Probability and Statistics Joseph Chang
Fundamental principles and techniques of probabilistic thinking, statistical modeling, and data analysis. Essentials of probability, including conditional probability, random variables, distributions, law of large numbers, central limit theorem, and Markov chains. Statistical inference with emphasis on the Bayesian approach: parameter estimation, likelihood, prior and posterior distributions, Bayesian inference using Markov chain Monte Carlo. Introduction to regression and linear models. Computers are used for calculations, simulations, and analysis of data. After or concurrently with MATH 118 or 120. QR

S&DS 240a, An Introduction to Probability Theory Harrison Zhou
Introduction to probability theory. Topics include probability spaces, random variables, expectations and probabilities, conditional probability, independence, discrete and continuous distributions, central limit theorem, Markov chains, and probabilistic modeling. This course counts towards the Data Science certificate but not the Statistics and Data Science major. Prerequisite: MATH 115. QR

S&DS 241a / MATH 241a, Probability Theory Yihong Wu and Winston Lin
Introduction to probability theory. Topics include probability spaces, random variables, expectations and probabilities, conditional probability, independence, discrete and continuous distributions, central limit theorem, Markov chains, and probabilistic modeling. After or concurrently with MATH 120 or equivalent. QR

S&DS 242b / MATH 242b, Theory of Statistics William Brinda and Andrew Barron
Study of the principles of statistical analysis. Topics include maximum likelihood, sampling distributions, estimation, confidence intervals, tests of significance, regression, analysis of variance, and the method of least squares. Some statistical computing. After S&DS 241 and concurrently with or after MATH 222 or 225, or equivalents. QR

S&DS 262b / AMTH 262b, Computational Tools for Data Science Roy Lederman
Introduction to the core ideas and principles that arise in modern data analysis, bridging statistics and computer science and providing students the tools to grow and adapt as methods and techniques change. Topics include principle component analysis, independent component analysis, dictionary learning, neural networks and optimization, as well as scalable computing for large datasets. Assignments include implementation, data analysis and theory. Students require background in linear algebra, multivariable calculus, probability and programming. Prerequisites: after or concurrently with MATH 222, 225, or 231; after or concurrently with MATH 120, 230, or ENAS 151; after or concurrently with CPSC 100, 112, or ENAS 130; after S&DS 100-108 or S&DS 230 or S&DS 241 or S&DS 242. Enrollment is limited; requires permission of the instructor. QR

S&DS 312a, Linear Models Jay Emerson
The geometry of least squares; distribution theory for normal errors; regression, analysis of variance, and designed experiments; numerical algorithms, with particular reference to the R statistical language. After S&DS 242 and MATH 222 or 225. QR

* S&DS 314b / PLSC 353b, Introduction to Causal Inference Winston Lin
Introduction to causal inference with applications to the social and health sciences. Topics include randomized experiments, matching and propensity score methods, sensitivity analysis, instrumental variables, and regression discontinuity designs. Mathematical problems, data analysis in R, and critical discussions of published applied research. Prerequisite: S&DS 242 and some programming experience in R. QR
S&DS 315a / PLSC 340a, Measuring Impact and Opinion Change Joshua Kalla
This course introduces students to measuring impact. Political campaigns, marketers, governments, and non-profit organizations regularly try to produce opinion change through TV, radio, online ads, mail, and door-to-door canvassing. Are these efforts successful at producing opinion change? In this course, we learn how to use experiments and natural experiments to measure the impact of opinion change efforts, and how to be appropriately skeptical of findings that claim to measure impact. This course also teaches data analysis skills in R. Prerequisite: A prior statistics course at Yale (e.g., PLSC 245, S&DS 242) and programming experience in R. Enrollment limited; requires permission of the instructor. QR

S&DS 351b / EENG 434b / MATH 251b, Stochastic Processes Joseph Chang
Introduction to the study of random processes including linear prediction and Kalman filtering, Poison counting process and renewal processes, Markov chains, branching processes, birth-death processes, Markov random fields, martingales, and random walks. Applications chosen from communications, networking, image reconstruction, Bayesian statistics, finance, probabilistic analysis of algorithms, and genetics and evolution. Prerequisite: S&DS 241 or equivalent. QR

S&DS 352b / MB&B 452b / MCDB 452b, Biomedical Data Science, Mining and Modeling Mark Gerstein and Matthew Simon
Techniques in data mining and simulation applied to bioinformatics, the computational analysis of gene sequences, macromolecular structures, and functional genomics data on a large scale. Sequence alignment, comparative genomics and phylogenetics, biological databases, geometric analysis of protein structure, molecular-dynamics simulation, biological networks, microarray normalization, and machine-learning approaches to data integration. Prerequisites: MB&B 301 and MATH 115, or permission of instructor. SC

S&DS 353a, Introductory Machine Learning John Lafferty
This course covers the key ideas and techniques in machine learning without the use of advanced mathematics. Basic methodology and relevant concepts are presented in lectures, including the intuition behind the methods. Assignments give students hands-on experience with the methods on different types of data. Topics include linear regression and classification, tree-based methods, clustering, topic models, word embeddings, recurrent neural networks, dictionary learning and deep learning. Examples come from a variety of sources including political speeches, archives of scientific articles, real estate listings, natural images, and several others. Programming is central to the course, and is based on the Python programming language. Prerequisites: Two of the following courses: S&DS 230, 238, 240, 241 and 242; previous programming experience (e.g., R, Matlab, Python, C++), Python preferred. QR

S&DS 361b / AMTH 361b, Data Analysis Elena Khusainova
Selected topics in statistics explored through analysis of data sets using the R statistical computing language. Topics include linear and nonlinear models, maximum likelihood, resampling methods, curve estimation, model selection, classification, and clustering. After S&DS 242 and MATH 222 or 225, or equivalents. QR

S&DS 363b, Multivariate Statistics for Social Sciences Jonathan Reuning-Scherer
Introduction to the analysis of multivariate data as applied to examples from the social sciences. Topics include principal components analysis, factor analysis, cluster analysis (hierarchical clustering, k-means), discriminant analysis, multidimensional scaling, and structural equations modeling. Extensive computer work using either SAS or SPSS programming software. Prerequisites: knowledge of basic inferential procedures and experience with linear models. QR

S&DS 364b / AMTH 364b / EENG 454b, Information Theory Andrew Barron
Foundations of information theory in communications, statistical inference, statistical mechanics, probability, and algorithmic complexity. Quantities of information and their properties: entropy, conditional entropy, divergence, redundancy, mutual information, channel capacity. Basic theorems of data compression, data summarization, and channel coding. Applications in statistics and finance. After STAT 241. QR

S&DS 365a or b, Applied Data Mining and Machine Learning Sahand Negahban
Techniques for data mining and machine learning from both statistical and computational perspectives, including support vector machines, bagging, boosting, neural networks, and other nonlinear and nonparametric regression methods. Discussion includes the basic ideas and intuition behind these methods, a more formal understanding of how and why they work, and opportunities to experiment with machine learning algorithms and to apply them to data. After S&DS 242. QR

S&DS 400a / MATH 330a, Advanced Probability Sekhar Tatikonda
Measure theoretic probability, conditioning, laws of large numbers, convergence in distribution, characteristic functions, central limit theorems, martingales. Some knowledge of real analysis assumed. QR

S&DS 410a, Statistical Inference Zhou Fan
A systematic development of the mathematical theory of statistical inference covering methods of estimation, hypothesis testing, and confidence intervals. An introduction to statistical decision theory. Prerequisite: level of S&DS 241.

S&DS 411b, Selected Topics in Statistical Decision Theory Harrison Zhou
Review of recent developments in statistical decision theory including nonparametric estimation, high dimensional (non)linear estimation, low rank and sparse matrices estimation, covariance matrices estimation, graphical models, and network analysis. Prerequisite: S&DS 410.

* S&DS 425a or b, Statistical Case Studies Staff
Statistical analysis of a variety of statistical problems using real data. Emphasis on methods of choosing data, acquiring data, assessing data quality, and the issues posed by extremely large data sets. Extensive computations using R statistical software. Prerequisites: prior
course work in probability and statistics, and a data analysis course at the level of STAT 361, 363, or 365 (or STAT 220, 230 if supported by other course work). QR

S&DS 480a or b, Individual Studies Sekhar Tatikonda
Directed individual study for qualified students who wish to investigate an area of statistics not covered in regular courses. A student must be sponsored by a faculty member who sets the requirements and meets regularly with the student. Enrollment requires a written plan of study approved by the faculty adviser and the director of undergraduate studies.

S&DS 491a and S&DS 492b, Senior Project Sekhar Tatikonda
Individual research that fulfills the senior requirement. Requires a faculty adviser and DUS permission. The student must submit a written report about results of the project.