Director of undergraduate studies: James Duncan (james.duncan@yale.edu), N309 D TAC, 785-2427, 313 MEC, 432-9917; seas.yale.edu/departments/biomedical-engineering

Engineering methods and strategies are used to address biomedical problems ranging from studies of physiological function using images to the development of artificial organs and new biomaterials. The B.S. degree in Biomedical Engineering is designed to provide students with an understanding of common fundamental methodologies and the ability to develop quantitative approaches to one of four biomedical engineering tracks: Bioimaging, Biomechanics and Mechanobiology, Biomolecular Engineering, and Systems Biology. The flexible course structure of the major permits students to bridge basic concepts in the life sciences and traditional areas of engineering, while gaining a comprehensive understanding of biomedical engineering as a field of study.

PREREQUISITES
The following prerequisites are common to all tracks in the major: BIOL 101 and 102 or a higher-level course in MCDB or MB&B, with the permission of the director of undergraduate studies (DUS); a lecture course in chemistry numbered CHEM 161 or higher; ENAS 194; MATH 115 (not necessary if placed into MATH 120 or ENAS 151); MATH 120 or ENAS 151; PHYS 180, 181, 205L, and 206L (or 165L and 166L, with DUS permission).

REQUIREMENTS OF THE MAJOR
Students must complete thirteen term courses, totaling at least eleven course credits, beyond the prerequisites, including at least three required courses in the chosen track; two terms of a biomedical engineering laboratory (BENG 355L, 356L); BENG 280, a half-credit course taken sophomore year as part of the senior requirement; and the senior requirement (see below). During the first year, students study basic mathematics, chemistry, and biology. By the end of the sophomore year, students should have taken physics, ENAS 194, BENG 249, and BENG 350. In the junior year, students gain a comprehensive grounding in the field through BENG 351, BENG 352, BENG 353, BENG 355L, and BENG 356L. During the junior and senior years, students acquire depth by taking electives in one of the four areas of concentration. One relevant course (e.g. MB&B 300) may be substituted with DUS permission. A senior seminar and a senior project give students practical, detailed information about their chosen area of concentration.

Students in all tracks are required to take the following courses: BENG 249, 280, 350, 351, 352, 353, 355L, 356L and 480.

Students in the Bioimaging track must also take three courses chosen from BENG 404, 406, 410, 444, 445, 475, 476, or 485.

Students in the Biomechanics and Mechanobiology track must also take three courses chosen from MENG 185, 280, 361, BENG 404, 406, 410, 434, 453, 455, 457, or 458.

Students in either the Biomolecular Engineering track and the Systems Biology track must also take three courses chosen from BENG 404, BENG 410, 411, 434, 435, 463, 464, 465, 467, or MENG 361.

Research Courses Students are permitted and encouraged to engage in research before the senior year by enrolling in BENG 471 and/or BENG 472. These courses, offered Pass/Fail, may be taken more than once for credit, but repeated courses do not count toward the major. See Academic Regulations, section C, Course Credits and Course Loads.

Credit/D/Fail No course taken Credit/D/Fail may count toward the major, including prerequisites.

Roadmap See visual roadmap of the requirements.

SENIOR REQUIREMENT
In their sophomore year, all students must enroll in BENG 280 and in their senior year, all students must enroll in BENG 480; both are half-credit courses. They must also complete a one-term senior project in their final term of enrollment (BENG 474) or a two-term, yearlong project (BENG 473, 474).

ADVISING
Preparation for graduate study The Biomedical Engineering curriculum is excellent preparation for graduate study in engineering, science, and medicine. In some cases, organic chemistry and/or certain biology courses may be substituted for one course in the major after consultation with the DUS.

Combined B.S./M.S. degree program Exceptionally able and well-prepared students may complete a course of study leading to the simultaneous award of the B.S. and M.S. degrees after eight terms of enrollment. See Academic Regulations, section K, Special Arrangements, “Simultaneous Award of the Bachelor’s and Master’s Degrees.” Interested students should consult the DUS prior to the sixth term of enrollment for specific requirements in Biomedical Engineering.

REQUIREMENTS OF THE MAJOR
Prerequisites BIOL 101 and 102, or higher-level course in MCDB or MB&B with DUS permission; 1 lecture course in chemistry numbered CHEM 161 or higher; ENAS 194; MATH 115 (not necessary if placed into MATH 120 or ENAS 151); MATH 120 or ENAS 151; PHYS 180, 181, and 205L, 206L (or 165L, 166L with DUS permission)
Biomedical Engineering

Number of courses 13 term courses, totaling at least 11 course credits, beyond prerequisites (incl senior req)

Distribution of courses 2 term courses in life sciences among prerequisites and required courses (typically BIOL 101 and 102 and BENG 350)

Substitution permitted Relevant course with DUS permission

Senior requirement BENG 280, a half-credit course taken sophomore year; BENG 480, a half-credit course taken senior year; a one-term senior project in final term of enrollment (BENG 474) or two-term, yearlong senior project (BENG 473 and 474)

Engineering methods and strategies are used today to address biomedical problems ranging from studies of physiological function using images to the development of artificial organs and new biomaterials. The major in Biomedical Engineering provides an understanding of the common methods that underlie many of these disciplines, as well as the ability to develop detailed quantitative approaches in one of the biomedical engineering fields.

In offering four tracks (Bioimaging, Biomechanics and Mechanobiology, Biomolecular Engineering, and Systems Biology), the Biomedical Engineering major provides for a variety of flexible programs corresponding to a range of student interests. The major can easily be adapted to the requirements for medical school.

First-year students interested in Biomedical Engineering study mathematics, physics, chemistry, and biology. General recommendations for a course of study in the first year are available under Biology.

There will be a meeting in the fall for students interested in the major. Information about Biomedical Engineering at Yale is available on the department website. The director of undergraduate studies (DUS) welcomes consultation with students about their programs.

FACULTY OF THE DEPARTMENT OF BIOMEDICAL ENGINEERING

Professors †Helene Beneviste, †Joerg Bewersdorf, Richard Carson, †Nicholas Christakis, †Todd Constable, †Robin de Graaf, James Duncan, Jay Humphrey, Fahmeeed Hyder, Themis Kyriakides, †Francis Lee, Andre Levchenko, †Graham Mason, †Evan Morris, †Laura Niklason, †Xenophon Papademetris, Douglas Rothman, Mark Saltzman, †Martin Schwartz, †Frederick Sigworth, †Albert Sinusas, †Brian Smith, Lawrence Staib, †Hemant Tagare, †Paul Van Tassel, Steven Zucker

Associate Professors †Joerg Bewersdorf, Stuart Campbell, †Daniel Coman, Tarek Famy, Rong Fan, †Gigi Galiana, Angelica Gonzalez, †Michelle Hampson, †Henry Hsia, Farren Isaacs, †Chi Liu, Kathryn Miller-Jensen, †Dana Peters, †Corey Wilson, †Jiangbing Zhou

Assistant Professors †Nicha Dvornek, †Ansel Hillmer, Michael Mak, Michael Murrell, †Dustin Scheinost, Gregory Tietjen, †Steven Tommasini, †Daniel Wiznia

Lecturers †Liqiong Gui, †Jing Zhou

†A joint appointment with primary affiliation in another department or school.

View Courses

Courses

BENG 230a / MB&B 330a / MCDB 330a / NSCI 324a, Modeling Biological Systems I Thierry Emonet and Jing Yan

Biological systems make sophisticated decisions at many levels. This course explores the molecular and computational underpinnings of how these decisions are made, with a focus on modeling static and dynamic processes in example biological systems. This course is aimed at biology students and teaches the analytic and computational methods needed to model genetic networks and protein signaling pathways. Students present and discuss original papers in class. They learn to model using MatLab in a series of in-class hackathons that illustrate the biological examples discussed in the lectures. Biological systems and processes that are modeled include: (i) gene expression, including the kinetics of RNA and protein synthesis and degradation; (ii) activators and repressors; (iii) the lysogeny/lysis switch of lambda phage; (iv) network motifs and how they shape response dynamics; (v) cell signaling, MAP kinase networks and cell fate decisions; and (vi) noise in gene expression. Prerequisites: MATH 115 or 116, BIOL 101-104, or with permission of instructors. This course also benefits students who have taken more advanced biology courses (e.g. MCDB 200, MCDB 310, MB&B 300/301). QR, SC, CO Course cr

BENG 249b, Introduction to Biomedical Computation Michael Mak

Computational and mathematical tools used in biomedical engineering for the simulation of biological systems and the analysis of biomedical data. Basics of computational programming in MATLAB; applications to modeling, design, and statistical and data analysis. Prerequisite: MATH 120 or ENAS 151. QR

* BENG 280a, Sophomore Seminar in Biomedical Engineering Rong Fan

Study of past successes and future needs of the multidisciplinary field of biomedical engineering. Areas of focus include: biomolecular engineering, including drug delivery and regenerative medicine; biomechanics, including mechanobiology and multiscale modeling; biomedical imaging and sensing, including image construction and analysis; and systems biology. ½ Course cr
BENG 350a / MCDB 310a, Physiological Systems
Stuart Campbell and W. Mark Saltzman
Regulation and control in biological systems, emphasizing human physiology and principles of feedback. Biomechanical properties of tissues emphasizing the structural basis of physiological control. Conversion of chemical energy into work in light of metabolic control and temperature regulation. Prerequisites: CHEM 165 or 167 (or CHEM 113 or 115), or PHYS 180 and 181; MCDB 120, or BIOL 101 and 102. SC

BENG 351a / CENG 351a, Biotransport and Kinetics
Kathryn Miller-Jensen
Creation and critical analysis of models of biological transport and reaction processes. Topics include mass and heat transport, biochemical interactions and reactions, and thermodynamics. Examples from diverse applications, including drug delivery, biomedical imaging, and tissue engineering. Prerequisites: MATH 115, ENAS 194; BIOL 101 and 102; CHEM 161, 163, or 167; BENG 249. QR

BENG 352b, Biomedical Signals and Images
James Duncan and Lawrence Staib
Principles and methods used to represent, model, and process signals and images arising from biomedical sources. Topics include continuous and discrete linear systems analysis, Fourier analysis and frequency response, metrics for signal similarity, and noise filtering. Biomedical examples range from one-dimensional electrical signals in nerves and muscles to two-dimensional images of organs and cells. Prerequisite: MATH 120 or ENAS 151. BENG 249, 350, and ENAS 194 strongly recommended. QR

BENG 353b / PHYS 353b, Introduction to Biomechanics
Michael Murrell
An introduction to the biomechanics used in biosolid mechanics, biofluid mechanics, biothermomechanics, and biochemomechanics. Diverse aspects of biomedical engineering, from basic mechanobiology to the design of novel biomaterials, medical devices, and surgical interventions. Prerequisites: PHYS 180, 181, MATH 115, and ENAS 194. QR

* BENG 355La, Physiological Systems Laboratory
Nicha Dvornek, Dustin Scheinost, and Steven Tommasini
Introduction to laboratory techniques and tools used in biomedical engineering for physiological measurement. Topics include bioelectric measurement, signal processing, and bone mechanics. Enrollment limited to majors in Biomedical Engineering, except by permission of the director of undergraduate studies. SC ½ Course cr

* BENG 356Lb, Biomedical Engineering Laboratory
Nicha Dvornek, Daniel Coman, and Jiangbing Zhou
Continuation of BENG 355L, introducing laboratory techniques and tools used in biomedical engineering. Topics include biomaterials and cell interactions, magnetic resonance spectroscopy and imaging, and image processing and machine learning. Enrollment limited. SC ½ Course cr

* BENG 403b / ECON 463b, The Economics and Science of Medicine
Gregory Raskin and Yashodhara Dash
This multidisciplinary class is an exploration of the background of today's bestselling medicines, their huge commercial impact, and the companies that created them. It focuses on the most compelling aspects of drug development and company formation in the context of topical issues like cancer treatment, gene editing, stem cell therapy, the opioid epidemic, and drug pricing controversies. Prerequisite: Introductory or intermediate microeconomics, introductory or intermediate Biology, Molecular Biology, Chemistry or Biomedical Engineering. SO

BENG 404b / MENG 404b, Medical Device Design and Innovation
Daniel Wiznia and Steven Tommasini
The engineering design, project planning, prototype creation, and fabrication processes for medical devices that improve patient conditions, experiences, and outcomes. Students develop viable solutions and professional-level working prototypes to address clinical needs identified by practicing physicians. Some attention to topics such as intellectual property, the history of medical devices, documentation and reporting, and regulatory affairs.

* BENG 405b / EVST 415b, Biotechnology and the Developing World
Anjelica Gonzalez
Study of technological advances that have global health applications. Ways in which biotechnology has enhanced quality of life in the developing world. The challenges of implementing relevant technologies in resource-limited environments, including technical, practical, social, and ethical aspects. Prerequisite: MCDB 120, or BIOL 101 and 102.

* BENG 406b, Medical Software Design
Xenophon Papademetris
Software design and implementation for medical applications, with emphasis on how new ideas can be developed within today’s healthcare regulatory environment. This project-based course focuses on the interaction of medical imaging and 3D printing. Topics include the methods and design principles to take 3D medical images, and how to image analysis algorithms to create 3D models to guide diagnosis and interventional procedures or build patient-specific medical devices. Permission of the instructor. Strong programming background in at least one programming language. SC

* BENG 410a, Physical and Chemical Basis of Bioimaging and Biosensing
Fahmeed Hyder, Ansel Hillmer, and Douglas Rothman
Basic principles and technologies for sensing the chemical, electrical, and structural properties of living tissues and of biological macromolecules. Topics include magnetic resonance spectroscopy, microelectrodes, fluorescent probes, chip-based biosensors, X-ray and electron tomography, and MRI. Prerequisites: BENG 351 and 352 or permission of instructor. QR, SC

* BENG 422a, Engineering and Biophysical Approaches to Cancer
Michael Mak
This course focuses on engineering and biophysical approaches to cancer. The course examines the current state of the art understanding of cancer as a complex disease and the advanced engineering and biophysical methods developed to study and treat this disease. All treatment methods are covered. Basic quantitative and computational backgrounds are required. Prerequisites: BENG 249 or equivalent, MATH 120 or equivalent. QR, SC
how single-cell omics data are generated and how high-throughput sequencing is conducted. Therapeutic target discovery, biomarker research, clinical diagnostics, and personalized medicine. Lab tours may be provided to show how population heterogeneity, signaling protein, and secreted protein analysis, metabolomics, multi-omics, and spatially resolved single-cell omics mapping. The central theme is that dysfunctional immunity is responsible for a wide range of disease states and that engineering tools and methods can generate spatial patterns. Time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form. Comparisons between models and experimental data. Dynamical models applied to neurons, neural systems, and cellular biophysical processes. Use of MATLAB to create models. Prerequisite: MCDB 330 or equivalent, or a 200-level biology course, or with permission of instructor.

BENG 465b / MB&B 361b / MCDB 361b / NSCI 325b, Modeling Biological Systems II

Advanced topics related to dynamical processes in biological systems. Processes by which cells compute, count, tell time, oscillate, and generate spatial patterns. Time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form. Comparisons between models and experimental data. Dynamical models applied to neurons, neural systems, and cellular biophysical processes. Use of MATLAB to create models. Prerequisite: MCDB 330 or equivalent, or a 200-level biology course, or with permission of instructor.

BENG 466b, Single-Cell Biology, Technologies, and Analysis

This course is to teach the principles of single-cell heterogeneity in human health and disease as well as computational techniques for single-cell analysis, with a particular focus on the omics-level data. Topics to be covered include single-cell level morphometric analysis, genomic alteration analysis, epigenomic analysis, mRNA transcriptome sequencing, small RNA profiling, surface epitope, intracellular signaling protein, and secreted protein analysis, metabolomics, multi-omics, and spatially resolved single-cell omics mapping. The students are expected to perform computational analysis of single-cell high-dimensional datasets to identify population heterogeneity, identify cell types, states, and differentiation trajectories. Finally, case studies are provided to show the power of single-cell analysis in therapeutic target discovery, biomarker research, clinical diagnostics, and personalized medicine. Lab tours may be provided to show how single-cell omics data are generated and how high-throughput sequencing is conducted.
* BENG 471a and BENG 472b, Special Projects James Duncan
Faculty-supervised individual or small-group projects with emphasis on research (laboratory or theory), engineering design, or tutorial study. Students are expected to consult the director of undergraduate studies and appropriate faculty members about ideas and suggestions for suitable topics. This course, offered Pass/Fail, can be taken at any time during a student’s career, and may be taken more than once. For the Senior Project, see BENG 473, 474. Permission of both the instructor and the director of undergraduate studies is required.

* BENG 473a and BENG 474b, Senior Project James Duncan
Faculty-supervised biomedical engineering projects focused on research (laboratory or theory) or engineering design. Students should consult with the director of undergraduate studies and appropriate faculty mentors for suitable projects. BENG 473 is taken during the fall term of the senior year and BENG 474 is taken during the spring term of the senior year. Permission of both the faculty mentor and the director of undergraduate studies is required.

BENG 475a / CPSC 475a / EENG 475a, Computational Vision and Biological Perception Steven Zucker
An overview of computational vision with a biological emphasis. Suitable as an introduction to biological perception for computer science and engineering students, as well as an introduction to computational vision for mathematics, psychology, and physiology students. Prerequisite: CPSC 112 and MATH 120, or with permission of instructor. QR, SC RP

BENG 476b / CPSC 476b, Advanced Computational Vision Steven Zucker
Advanced view of vision from a mathematical, computational, and neurophysiological perspective. Emphasis on differential geometry, machine learning, visual psychophysics, and advanced neurophysiology. Topics include perceptual organization, shading, color and texture analysis, and shape description and representation. After CPSC 475. QR, SC

* BENG 480a, Seminar in Biomedical Engineering Andre Levchenko
Oral presentations and written reports by students analyzing papers from scientific journals on topics of interest in biomedical engineering, including discussions and advanced seminars from faculty on selected subjects. (For Class of 2020 and beyond this course is worth .5 credit.) ½ Course cr

* BENG 485b, Fundamentals of Neuroimaging Fahmee Hyder and Douglas Rothman
The neuroenergetic and neurochemical basis of several dominant neuroimaging methods, including fMRI. Technical aspects of different methods, interpretation of results, and controversies or challenges regarding the application of fMRI and related methods in medicine. WR, SC