COGNITIVE SCIENCE

Director of undergraduate studies: Joshua Knobe, 102 C, 432-1699, joshua.knobe@yale.edu; www.yale.edu/cogsci

Cognitive science explores the nature of cognitive processes such as perception, reasoning, memory, attention, language, decision making, imagery, motor control, and problem solving. The goal of cognitive science, stated simply, is to understand how the mind works. Cognitive science is an inherently interdisciplinary endeavor, drawing on tools and ideas from fields such as psychology, computer science, linguistics, philosophy, economics, and neuroscience. Approaches include empirical studies of the ontogenetic and phylogenetic development of cognitive abilities, experimental work on cognitive processing in adults, attempts to understand perception and cognition based on patterns of breakdown in pathology, computational and robotic research that strives to simulate aspects of cognition and behavior, neuroscientific investigations of the neural bases of cognition using neural recording and brain scanning, and the development of philosophical theories of the nature of mind.

PREREQUISITE
An introductory survey course, CGSC 110, is normally taken by the end of the fall term of the sophomore year and prior to admission to the major.

REQUIREMENTS OF THE MAJOR
The requirements of the major for the B.S. and B.A. degrees are the same, except for the skills requirement and the senior requirement. Fourteen term courses, for a total of thirteen and one half course credits, are required for the major, including the introductory course and the senior requirement. Each major program must include the elements described below. The particular selection of courses must be approved by the director of undergraduate studies in order to assure overall coherence. No course may be used to fulfill more than one requirement for the major.

Breadth requirement A breadth requirement introduces students to the subfields of cognitive science. Each major is required to take a course from four of the following six areas:

1. Computer science: CPSC 201
2. Economics and decision making: ECON 159
4. Neuroscience: CGSC 201, MCDB 320, PSYC 160, 270
5. Philosophy: PHIL 126, 182, 269, 270, 271
6. Psychology: PSYC 110, 140, 139

Depth requirement Students fulfill a depth requirement by completing six courses that focus on a specific topic or area in cognitive science. The depth courses must be chosen from at least two disciplines, and are typically drawn from the six cognitive science subfields. It may be possible to draw depth courses from other fields when necessary to explore the student’s focal topic, in consultation with the DUS. All six depth courses must be at the intermediate or advanced level; for most disciplines, courses numbered 300 or above fulfill the requirement. With permission of the DUS, up to two directed reading or research courses may count toward the depth requirement.

Skills requirement Because formal techniques are fundamental to cognitive science, one skills course is required, preferably prior to the senior year. Courses that fulfill the skills requirement for the B.A. include CPSC 112, 202, LING 224, PSYC 200, and 270. Other courses may fulfill this requirement with permission of the DUS. The skills requirement for the B.S. is fulfilled by PSYC 200 or an equivalent course in statistics.

Junior colloquium In the junior year, students are required to take CGSC 395, a half-credit colloquium in which majors discuss current issues and research in cognitive science and select a senior essay topic.

Credit/D/Fail Courses taken Credit/D/Fail may not be counted toward the requirements of the major, except with permission of the DUS.

SENIOR REQUIREMENT
In the senior year, students take CGSC 491, a full-credit capstone course in which the senior essay is written. Students in the course meet regularly with one another and with the faculty to discuss current work in cognitive science and their own developing research projects. Students must take this course during their last spring term at Yale. If spring is not the student’s final term, (e.g., a planned December graduation date), then it is possible to attend the class and complete some of the assignments, but not turn in the finished thesis until November. In this case, a grade of INC will be given for the Spring term. (Unlike other incomplete grades at Yale, an incomplete for a thesis does not expire.)

B.S. degree program The B.S. degree is typically awarded to students who conduct empirical research as part of their senior requirement. This normally includes designing an experiment and collecting and analyzing data.
B.A. degree program The B.A. degree is typically awarded to students who conduct a nonempirical senior essay. There are no restrictions on the research format for the B.A.

ADVISING AND APPLICATION TO THE MAJOR

Students may apply to enter the major at any point after the first year. Applications must be made in writing to the DUS. Applications must include (a) an official or unofficial transcript of work at Yale, (b) a brief statement of purpose, which indicates academic interests and expected focus within the areas of the Cognitive Science major, and (c) a list of the six upper-level courses that the student plans to take as part of the research focus. Application forms and answers to frequently asked questions are available on the program’s website.

REQUIREMENTS OF THE MAJOR

Prerequisite CGSC 110

Number of courses 14 term courses, for a total of 13.5 course credits (incl prereq and senior req)

Specific course required CGSC 395

Distribution of courses 1 course each in 4 of 6 subfields, as specified; 6 courses in a specific topic or area, as specified; 1 skills course, as specified

Senior requirement B.S. – Empirical research and senior essay in CGSC 491; B.A. – Nonempirical senior essay in CGSC 491

FACULTY ASSOCIATED WITH THE PROGRAM IN COGNITIVE SCIENCE

Professors Woo-kyoung Ahn (Psychology), Stephen Anderson (Linguistics), Amy Arnsten (School of Medicine), John Bargh (Psychology), Paul Bloom (Psychology), Hal Blumenfeld (School of Medicine), Marvin Chun (Psychology), Michael Della Rocca (Philosophy), Ravi Dhar (School of Management), Julie Dorsey (Computer Science), Robert Frank (Linguistics), Shane Frederick (School of Management), David Gelernter (Computer Science), Tamar Gendler (Philosophy), Laurence Horn (Emeritus) (Linguistics), Marcia Johnson (Emeritus), Dan Kahan (Law School), Frank Keil (Psychology, Linguistics), Joshua Knobe (Philosophy), Daeyeol Lee (School of Medicine), Gregory McCarthy (Psychology), Drew McDermott (Computer Science), Nathan Novemsky (School of Management, Psychology), Kenneth Pugh (School of Medicine), Ian Quinn (Music), Holly Rushmeier (Computer Science), Laurie Santos (Psychology), Brian Scassellati (Computer Science, Mechanical Engineering), Brian Scholl (Chair) (Psychology), Sun-Joo Shin (Philosophy), Jason Stanley (Philosophy), Zoltán Szabó (Philosophy), Nick Turk-Browne (Psychology), Tom Tyler (Law), Fred Volkmar (School of Medicine), David Watts (Anthropology), Karen Wynn (Psychology), Gideon Yaffe (Law), Raffaella Zanuttini (Linguistics), Steven Zucker (Computer Science, Biomedical Engineering)

Associate Professors Daylian Cain (School of Management), James McPartland (Child Study Center), Maria Piñango (Linguistics), David Rand (Psychology)

Assistant Professors Ryan Bennett (Linguistics), Steve Chang (Psychology), Philip Corlett (Psychiatry), Henry Cowles (History), Molly Crockett (Psychology), Yarrow Dunham (Psychology), Julian Jara-Ettinger (Psychology), Hedy Kober (School of Medicine), George Newman (School of Management)

Introductory Courses

* CGSC 071a, The Mind of a Dog April Ruiz
Examination of one of humans’ closest companions: the domestic dog. Readings and class discussion explore how researchers study animal minds—from early observations of animal behavior to contemporary research in comparative cognition—and how this informs emerging work in canine cognition. Further discussion of how the human mind interprets dog behavior and how empirical investigations of canine cognition shed new light in understanding how pets see the world. Enrollment limited to freshmen. Preregistration required; see under Freshman Seminar Program. so

CGSC 110a / PSYC 130a, Introduction to Cognitive Science Brian Scholl
An introduction to the interdisciplinary study of how the mind works. Discussion of tools, theories, and assumptions from psychology, computer science, neuroscience, linguistics, and philosophy. so

CGSC 139b / PSYC 139b, The Mental Lives of Babies and Animals Karen Wynn
Interdisciplinary exploration of the cognitive, social, and emotional capacities of creatures lacking language and culture. The extent to which our complex psychology is unique to mature humans; the relative richness of a mental life without language or culture. Some attention to particular human populations such as children with autism and adults with language disorders. so

CGSC 216b / LING 116b, Cognitive Science of Language Robert Frank
The study of language from the perspective of cognitive science. Exploration of mental structures that underlie the human ability to learn and process language, drawing on studies of normal and atypical language development and processing, brain imaging, neuropsychology, and computational modeling. Innate linguistic structure vs. determination by experience and culture; the relation between linguistic and nonlinguistic cognition in the domains of decision making, social cognition, and musical cognition; the degree to which language shapes perceptions of color, number, space, and gender. so
Advanced Courses

* CGSC 313a / PHIL 305a / PSYC 313a, Philosophy for Psychologists
 Joshua Knobe
 Introduction to frameworks developed within philosophy that have applications in psychological research. Principal topics include the self, causation, free will, and morality. Recommended preparation: a course in philosophy or psychology.
 HU, SO

* CGSC 343b / MUSI 343b, Music Cognition
 Ian Quinn
 A survey of historical and current approaches to questions about the perception and cognition of music. Topics include psychoacoustics; the cognitive neuroscience of music; relationships between music and language; the nature of musical knowledge; and debates about aesthetics, evolutionary psychology, and musical universals. Prerequisite: MUSI 110 or familiarity with music notation.
 SO

CGSC 352b / NSCI 352b / PSYC 352b, Arrested or Adaptive Development in the Adolescent Brain
 BJ Casey
 Study of empirical and theoretical accounts of adolescent-specific changes in the brain and in behavior that relate to the development of self control. Discussions will focus on adaptive and arrested adolescent brain development in the context of relevant legal, social, and health policy issues.
 SC

* CGSC 390a, Junior Seminar in Cognitive Science
 Mark Sheskin
 Discussion of historically important papers in cognitive science. Topics are varied and reflect student interests. Some attention to planning for the senior project. Intended for juniors in the Cognitive Science major.

* CGSC 412a / PSYC 412a, Theories of Human Uniqueness
 Mark Sheskin
 Overview of several theories of human uniqueness. Foundational topics include human language vs. animal communication, human moral psychology vs. animal social behavior, and transmission of human culture vs. intergenerational learning in animals. Debates include how theories of human uniqueness relate to each other, and whether any constitute a categorical difference between human and nonhuman animals.

* CGSC 425b / PSYC 425b, Social Perception
 Brian Scholl
 Connections between visual perception, among the earliest and most basic of human cognitive processes, and social cognition, among the most advanced forms of higher-level cognition. The perception of animacy, agency, and goal-directedness; biological motion; face perception (including the perception of facial attractiveness); gaze processing and social attention; "thin-slicing" and "perceptual stereotypes"; and social and cultural influences on perception.
 SO

* CGSC 437b / PSYC 437b, Minds, Brains, and Machines
 Julian Jara-Ettinger
 Exploration of the implications that the brain is a kind of computer that gives rise to the mind. Readings combine classical and cutting-edge research in psychology, philosophy, and artificial intelligence.
 SO, RP

Courses for Majors

* CGSC 395b, Junior Colloquium in Cognitive Science
 Mark Sheskin
 Survey of contemporary issues and current research in cognitive science. By the end of the term, students select a research topic for the senior essay. Enrollment limited to Cognitive Science majors.
 ½ Course cr

* CGSC 471a and CGSC 472b, Directed Research in Cognitive Science
 Joshua Knobe
 Research projects for qualified students. The student must be supervised by a member of the Cognitive Science faculty, who sets the requirements and directs the research. To register, a student must submit a written plan of study to the director of undergraduate studies and the faculty supervisor. The normal minimum requirement is a written report of the completed research, but individual faculty members may set alternative equivalent requirements. Only one term may be offered toward the major, with permission of the director of undergraduate studies; two terms may be offered toward the bachelor’s degree.

* CGSC 473a and CGSC 474b, Directed Reading in Cognitive Science
 Joshua Knobe
 Individual study for qualified students who wish to investigate an area of cognitive science not covered in regular courses. The student must be supervised by a member of the Cognitive Science faculty, who sets the requirements and meets regularly with the student. To register, a student must submit a written plan of study to the director of undergraduate studies and the faculty supervisor. The normal minimum requirement is a term paper, but individual faculty members may set alternative equivalent requirements. Only one term may be offered toward the major, with permission of the director of undergraduate studies; two terms may be offered toward the bachelor’s degree.

* CGSC 491b, Senior Project
 Mark Sheskin
 A research colloquium leading to the completion of the senior essay. Students attend regular colloquium presentations. Enrollment limited to Cognitive Science majors.
Related Courses That May Count toward the Major

* CHLD 350b / PSYC 350b, Autism and Related Disorders Fred Volkmar and James McPartland
Weekly seminar focusing on autism and related disorders of socialization. A series of lectures on topics in etiology, diagnosis and assessment, treatment and advocacy, and social neuroscience methods; topics cover infancy through adulthood. Supervised experience in the form of placement in a school, residence, or treatment setting for individuals with autism spectrum disorders. Details about admission to the course are explained at the first course meeting. Prerequisite: an introductory psychology course. so

CPSC 112b, Introduction to Programming Benedict Brown
Development on the computer of programming skills, problem-solving methods, and selected applications. No previous experience with computers necessary. qr

CPSC 201a or b, Introduction to Computer Science Stephen Slade
Introduction to the concepts, techniques, and applications of computer science. Topics include computer systems (the design of computers and their languages); theoretical foundations of computing (computability, complexity, algorithm design); and artificial intelligence (the organization of knowledge and its representation for efficient search). Examples stress the importance of different problem-solving methods. After CPSC 112 or equivalent. qr

Math: Stat/Applied Math
CPSC 202a, Mathematical Tools for Computer Science James Aspnes
Introduction to formal methods for reasoning and to mathematical techniques basic to computer science. Topics include propositional logic, discrete mathematics, and linear algebra. Emphasis on applications to computer science: recurrences, sorting, graph traversal, Gaussian elimination. qr

CPSC 470a, Artificial Intelligence Dragomir Radev
Introduction to artificial intelligence research, focusing on reasoning and perception. Topics include knowledge representation, predicate calculus, temporal reasoning, vision, robotics, planning, and learning. After CPSC 201 and 202. qr

[CPSC 471, Advanced Topics in Artificial Intelligence]

ECON 159a, Game Theory Maria Saez Marti and Marina Halac
An introduction to game theory and strategic thinking. Ideas such as dominance, backward induction, Nash equilibrium, evolutionary stability, commitment, credibility, asymmetric information, adverse selection, and signaling are applied to games played in class and to examples drawn from economics, politics, the movies, and elsewhere. After introductory microeconomics. No prior knowledge of game theory assumed. qr, so

LING 110a, Language: Introduction to Linguistics Jim Wood
The goals and methods of linguistics. Basic concepts in phonology, morphology, syntax, and semantics. Techniques of linguistic analysis and construction of linguistic models. Trends in modern linguistics. The relation of linguistics to psychology, logic, and other disciplines. so

[LING 130, Evolution of Language]

[LING 169, Meaning]

LING 220b / PSYC 318b, General Phonetics Dustin Bowers
Investigation of possible ways to describe the speech sounds of human languages. Acoustics and physiology of speech; computer synthesis of speech; practical exercises in producing and transcribing sounds. so

LING 227a / PSYC 327a, Language and Computation I Robert Frank
Design and analysis of computational models of language. Topics include finite state tools, computational morphology and phonology, grammar and parsing, lexical semantics, and the use of linguistic models in applied problems. Prerequisite: prior programming experience or permission of instructor. qr, so

LING 232a, Introduction to Phonological Analysis Dustin Bowers
The structure of sound systems in particular languages. Phonemic and morphophonemic analysis, distinctive-feature theory, formulation of rules, and problems of rule interpretation. Emphasis on problem solving. Prerequisite: LING 220, or a grade of B or above in LING 110. (Formerly LING 132) so

* LING 235b, Phonological Theory Jonathan Manker
Topics in the architecture of a theory of sound structure. Motivations for replacing a system of ordered rules with a system of ranked constraints. Optimality theory: universals, violability, constraint types and their interactions. Interaction of phonology and morphology, as well as the relationship of phonological theory to language acquisition and learnability. Opacity, lexical phonology, and serial versions of optimality theory. Prerequisite: LING 232 or permission of instructor. so, rp

LING 233a, Syntax I Raffaella Zanuttini
An introduction to the syntax of natural language. Generative syntactic theory and key theoretical concepts. Syntactic description and argumentation. Topics include the structure of clauses and noun phrases, movement operations, and the notion of parameter. (Formerly LING 153) so
LING 254b, Syntax II Jim Wood
Recent developments in the principles and parameters approach to syntactic theory. In-depth exploration of theoretical and empirical
issues in long-distance dependencies (island effects, dependency types, movement vs. binding), the character of syntactic structure
(constituency, thematic mapping, functional categories), and the architecture of grammatical derivations (logical form, operations for
structure building, anaphora). Prerequisite: LING 253. SO

LING 263a, Semantics I Matthew Barros
Introduction to truth-conditional compositional semantics. Set theory, first- and higher-order logic, and the lambda calculus as they
relate to the study of natural language meaning. Some attention to analyzing the meanings of tense/aspect markers, adverbs, and modals.
Q8, SO

* LING 280a, Morphology Jim Wood
The theory of word structure within a formal grammar. Relation to other areas of grammar (syntax, phonology); basic units of word
structure; types of morphology (inflection, derivation, compounding). Prerequisites: LING 232 and 253, or permission of instructor. SO

MCDB 320a / NSCI 320a, Neurobiology Haig Keshishian and Paul Forscher
The excitability of the nerve cell membrane as a starting point for the study of molecular, cellular, and systems-level mechanisms
underlying the generation and control of behavior. Prerequisites: year of college-level chemistry; a course in physics is strongly
recommended. SC

PHIL 126b, Introduction to Modern Philosophy from Descartes to Kant Keith DeRose
An introduction to major figures in the history of modern philosophy, with critical reading of works by Descartes, Malabranche, Spinoza,
Leibniz, Locke, Berkeley, Hume, and Kant. Intended to be taken in conjunction with PHIL 125, although PHIL 125 is not a prerequisite.
HU

PHIL 267a, Mathematical Logic Sun-Joo Shin
An introduction to the metatheory of first-order logic, up to and including the completeness theorem for the first-order calculus.
Introduction to the basic concepts of set theory. Prerequisite: PHIL 115 or permission of instructor. QR
Math: Logic/Foundations

PHIL 270a, Epistemology Daniel Greco
Introduction to current topics in the theory of knowledge. The analysis of knowledge, justified belief, rationality, certainty, and evidence.
HU

PSYC 110a or b, Introduction to Psychology Staff
A survey of major psychological approaches to the biological, cognitive, and social bases of behavior. SO

PSYC 140b / EDST 140b, Developmental Psychology Frank Keil
An introduction to research and theory on the development of perception, action, emotion, personality, language, and cognition from a
cognitive science perspective. Focus on birth to adolescence in humans and other species. Prerequisite: PSYC 110. SO
Psychology: Core
Psychology: Social Science

PSYC 150b / NSCI 160a, The Human Brain Gregory McCarthy
Study of social cognition, attitudes and persuasion, group processes, intergroup processes, prosocial behavior, aggression, and
conformity. Theories, methodology, and applications of social psychology. Prerequisite: PSYC 110. SO
Psychology: Core
Psychology: Social Science

PSYC 200b, Statistics Dylan Gee
Measures of central tendency, variability, association, and the application of probability concepts in determining the significance of
research findings. QR

PSYC 270a or b / NSCI 235a or b, Research Methods in Behavioral Neuroscience Nelson Donegan
Students design and conduct research to study brain function and behavior. Emphasis on hands-on participation in behavioral and
neuroscience techniques. Prerequisites: PSYC 160 or 170, and a course in statistics, or with permission of instructor. SC
Psychology: Natural Science
Psychology: ResearchMethods