ENGINEERING AND APPLIED SCIENCE

Director of Undergraduate Studies: Vincent Wilczynski, 107 BCT, 432-4221, vincent.wilczynski@yale.edu

Courses in Engineering and Applied Science fall into three categories: those intended primarily for students majoring in one of the several engineering and applied science disciplines; those designed for students majoring in subjects other than engineering, the applied sciences, and the natural sciences; and those designed to meet common interests of students majoring in engineering, the applied sciences, or the natural sciences.

In the first category, the departments of Biomedical Engineering, Chemical and Environmental Engineering, Computer Science, Electrical Engineering, and Mechanical Engineering and Materials Science offer courses intended primarily for majors in engineering and applied science disciplines. Courses in these departments may also be relevant for students with appropriate backgrounds who are majoring in chemistry, physics, biology, geology and geophysics, and mathematics. For information about majors in engineering and their related courses, see under Biomedical Engineering, Chemical Engineering, Computer Science, Electrical Engineering, Environmental Engineering, and Mechanical Engineering.

The School of Engineering and Applied Science is responsible for courses in the other two categories: technology for students majoring in subjects other than engineering, the applied sciences, and the natural sciences; and topics common to students majoring in engineering, the applied sciences, and the natural sciences. Courses for non-science majors are intended for all students seeking a broad perspective on issues of scientific and technological import, and they introduce students who may be planning careers in law, business, or public service to concepts and methods of engineering and applied science. Courses for science and engineering majors include topics in applied mathematics and computation.

Courses without Prerequisites in Engineering

* ENAS 100b / APHY 100b / EVST 100b / G&G 105b / PHYS 100b, Energy Technology and Society Daniel Prober, Michael Oristaglio, and Julie Paquette
 The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non-science majors with strong backgrounds in math and science. QR, SC

ENAS 110b / APHY 110b, The Technological World Staff
An exploration of modern technologies that play a role in everyday life, including the underlying science, current applications, and future prospects. Examples include solar cells, light-emitting diodes (LEDs), computer displays, the global positioning system, fiber-optic communication systems, and the application of technological advances to medicine. For students not committed to a major in science or engineering; no college-level science or mathematics required. Prerequisite: high school physics or chemistry. QR, SC

* ENAS 118a, Introduction to Engineering, Innovation, and Design Vincent Wilczynski and Lawrence Wilen
An introduction to engineering, innovation, and design process. Principles of material selection, stoichiometry, modeling, data acquisition, sensors, rapid prototyping, and elementary microcontroller programming. Types of engineering and the roles engineers play in a wide range of organizations. Lectures are interspersed with practical exercises. Students work in small teams on an engineering/innovation project at the end of the term. Priority to freshmen. RP

ENAS 156b / ASTR 156b, Introduction to Digital Dome Media Staff
The design and production of planetarium shows, art projects, or other immersive or interactive projects with a digital dome projection system, including the ScidomeHD digital system and the stereo projector system, both located at the Leitner Family Observatory and Planetarium (LFOP) and with the portable Starlab dome. Topics include real-time and scripted control of 3D graphics engines; mapping of images and video onto a spherical dome; 3D rendering using Blender, Processing, and vpython; audio and video editing for dome content; interactive projects; and basic design principles for narrative and interactive educational shows. Some programming or digital media experience is recommended. SC ½ Course cr

ENAS 335a / EP&E 204a, Professional Ethics Mercedes Carreras
A theoretical and case-oriented approach to ethical decision making. Concepts, tools, and methods for constructing and justifying solutions to moral problems that students may face as professionals. SO

Applied Mathematics and Computation Courses

ENAS 114a or b / APHY 114a or b / PHYS 114a or b, Multivariable Calculus for Engineers Staff
An introduction to multivariable calculus focusing on applications to engineering problems. Topics include vector-valued functions, vector analysis, partial differentiation, multiple integrals, vector calculus, and the theorems of Green, Stokes, and Gauss. Prerequisite: MATH 115 or equivalent. QR, RP

ENAS 104a or b / APHY 104a or b, Ordinary and Partial Differential Equations with Applications Staff
Basic theory of ordinary and partial differential equations useful in applications. First- and second-order equations, separation of variables, power series solutions, Fourier series, Laplace transforms. Prerequisites: ENAS 151 or equivalent, and knowledge of matrix-based operations. QR, RP
ENAS 440a / MENG 440a, Applied Numerical Methods for Algebraic Systems, Eigensystems, and Function Approximation Beth Anne Bennett
The derivation, analysis, and implementation of various numerical methods. Topics include root-finding methods, numerical solution of systems of linear and nonlinear equations, eigenvalue/eigenvector approximation, polynomial-based interpolation, and numerical integration. Additional topics such as computational cost, error analysis, and convergence are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 130 or some experience with Matlab, C++, or Fortran programming. QR RP

ENAS 441b / MENG 441b, Applied Numerical Methods for Differential Equations Beth Anne Bennett
The derivation, analysis, and implementation of numerical methods for the solution of ordinary and partial differential equations, both linear and nonlinear. Additional topics such as computational cost, error estimation, and stability analysis are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 130 or some knowledge of Matlab, C++, or Fortran programming; ENAS 194 or equivalent. ENAS 440 is not a prerequisite. QR RP

* ENAS 450b / APHY 450b / MENG 450b, Advanced Synchrotron Techniques and Electron Spectroscopy of Materials Charles Ahn
Introduction to concepts of advanced x-ray and electron-based techniques used for understanding the electronic, structural, and chemical behavior of materials. Students learn from world-leading experts on fundamentals and practical applications of various diffraction, spectroscopy, and microscopy methods. Course highlights the use of synchrotrons in practical experiments. Prerequisites: physics and quantum mechanics/physical chemistry courses for physical science and engineering majors, or by permission of instructor. QR SC

ENAS 496b / EENG 434b / MATH 251b / S&DS 351b, Stochastic Processes Yihong Wu
Introduction to the study of random processes including linear prediction and Kalman filtering, Poison counting process and renewal processes, Markov chains, branching processes, birth-death processes, Markov random fields, martingales, and random walks. Applications chosen from communications, networking, image reconstruction, Bayesian statistics, finance, probabilistic analysis of algorithms, and genetics and evolution. Prerequisite: S&DS 241 or equivalent. QR