ENGINEERING AND APPLIED SCIENCE

Director of undergraduate studies: Vincent Wilczynski (vincent.wilczynski@yale.edu), 107 BCT, 432-4221

Courses in Engineering and Applied Science fall into three categories: those intended primarily for students majoring in one of the several engineering and applied science disciplines; those designed for students majoring in subjects other than engineering, the applied sciences, and the natural sciences; and those designed to meet common interests of students majoring in engineering, the applied sciences, or the natural sciences.

In the first category, the departments of Biomedical Engineering, Chemical and Environmental Engineering, Computer Science, Electrical Engineering, and Mechanical Engineering and Materials Science offer courses intended primarily for majors in engineering and applied science disciplines. Courses in these departments may also be relevant for students with appropriate backgrounds who are majoring in chemistry, physics, biology, geology and geophysics, and mathematics. For information about majors in engineering and their related courses, see under Biomedical Engineering, Chemical Engineering, Computer Science, Electrical Engineering, Environmental Engineering, and Mechanical Engineering.

The School of Engineering and Applied Science is responsible for courses in the other two categories: technology for students majoring in subjects other than engineering, the applied sciences, and the natural sciences; and topics common to students majoring in engineering, the applied sciences, and the natural sciences. Courses for non-science majors are intended for all students seeking a broad perspective on issues of scientific and technological import, and they introduce students who may be planning careers in law, business, or public service to concepts and methods of engineering and applied science. Courses for science and engineering majors include topics in applied mathematics and computation.

Courses without Prerequisites in Engineering

* ENAS 100b / APHY 100b / EVST 100b / G&G 105b / PHYS 100b, Energy Technology and Society Daniel Prober
 The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non-science majors with strong backgrounds in math and science. Q8, QC

ENAS 110b / APHY 110b, The Technological World Owen Miller
An exploration of modern technologies that play a role in everyday life, including the underlying science, current applications, and future prospects. Examples include solar cells, light-emitting diodes (LEDs), computer displays, the global positioning system, fiber-optic communication systems, and the application of technological advances to medicine. For students not committed to a major in science or engineering; no college-level science or mathematics required. Prerequisite: high school physics or chemistry. Q8, SC

* ENAS 118a, Introduction to Engineering, Innovation, and Design Vincent Wilczynski and Lawrence Wilen
An introduction to engineering, innovation, and design process. Principles of material selection, stoichiometry, modeling, data acquisition, sensors, rapid prototyping, and elementary microcontroller programming. Types of engineering and the roles engineers play in a wide range of organizations. Lectures are interspersed with practical exercises. Students work in small teams on an engineering/innovation project at the end of the term. Priority to freshmen. RP

* ENAS 120b / CENG 120b / ENVE 120b, Introduction to Environmental Engineering John Fortner
Introduction to engineering principles related to the environment, with emphasis on causes of problems and technologies for abatement. Topics include air and water pollution, global climate change, hazardous chemical and emerging environmental technologies. Prerequisites: high school calculus and chemistry or CHEM 161, 165 or CHEM 163, 167 (may be taken concurrently) or permission of instructor. Q8, SC

ENAS 335a / EP&E 204a, Professional Ethics Mercedes Carreras
A theoretical and case-oriented approach to ethical decision making. Concepts, tools, and methods for constructing and justifying solutions to moral problems that students may face as professionals. SO

ENAS 360b / ENVE 360b, Green Engineering and Sustainable Design Julie Zimmerman
Study of green engineering, focusing on key approaches to advancing sustainability through engineering design. Topics include current design, manufacturing, and disposal processes; toxicity and benign alternatives; policy implications; pollution prevention and source reduction; separations and disassembly; material and energy efficiencies and flows; systems analysis; biomimicry; and life cycle design, management, and analysis. Prerequisites: CHEM 161, 165 or 163, 167 (or CHEM 112, 113, or 114, 115), or permission of instructor. Q8

* ENAS 400a, Making it Joseph Zinter
Positioned at the intersection of design, technology, and entrepreneurship, students are introduced to the many facets of product design and development while simultaneously working to conceive and develop a marketable product and business.

Applied Mathematics and Computation Courses

ENAS 120a or b, Introduction to Computing for Engineers and Scientists Beth Anne Bennett
An introduction to the use of the C and C++ programming languages and the software packages Mathematica and MATLAB to solve a variety of problems encountered in mathematics, the natural sciences, and engineering. General problem-solving techniques, object-
oriented programming, elementary numerical methods, data analysis, and graphical display of computational results. Prerequisite: MATH 115 or equivalent. Recommended preparation: previous programming experience.

ENAS 151a or b / APHY 151a or b, Multivariable Calculus for Engineers
Staff
An introduction to multivariable calculus focusing on applications to engineering problems. Topics include vector-valued functions, vector analysis, partial differentiation, multiple integrals, vector calculus, and the theorems of Green, Stokes, and Gauss. Prerequisite: MATH 115 or equivalent.

ENAS 194a or b / APHY 194a or b, Ordinary and Partial Differential Equations with Applications
Staff
Basic theory of ordinary and partial differential equations useful in applications. First- and second-order equations, separation of variables, power series solutions, Fourier series, Laplace transforms. Prerequisites: ENAS 151 or equivalent, and knowledge of matrix-based operations.

ENAS 397a / EENG 397a, Mathematical Methods in Engineering
J. Rimas Vaišnys
Exploration of several areas of mathematics useful in science and engineering; recent approaches to problem solving made possible by developments in computer software. Mathematica and Eureqa are used to investigate and solve problems involving nonlinear differential equations, complex functions, and partial differential equations. Prerequisites: MATH 222, and ENAS 194 or MATH 246, or equivalents; familiarity with computer programming.

ENAS 441a / MENG 441a, Applied Numerical Methods for Differential Equations
Beth Anne Bennett
The derivation, analysis, and implementation of numerical methods for the solution of ordinary and partial differential equations, both linear and nonlinear. Additional topics such as computational cost, error estimation, and stability analysis are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 194 or some knowledge of Matlab, C++, or Fortran programming; ENAS 194 or equivalent. ENAS 440 is not a prerequisite.

ENAS 450b / APHY 450b / MENG 450b, Advanced Synchrotron Techniques and Electron Spectroscopy of Materials
Charles Ahn
Introduction to concepts of advanced x-ray and electron-based techniques used for understanding the electronic, structural, and chemical behavior of materials. Students learn from world-leading experts on fundamentals and practical applications of various diffraction, spectroscopy, and microscopy methods. Course highlights the use of synchrotrons in practical experiments. Prerequisites: physics and quantum mechanics/physical chemistry courses for physical science and engineering majors, or by permission of instructor.