NEUROSCIENCE

Directors of undergraduate studies: Damon Clark (neuroscience.dus@yale.edu) (MCDB), YSB C148; Steve Chang (steve.chang@yale.edu) (Psychology), Kirtland 310; neuroscience.yale.edu

Neuroscience aims to understand how the brain produces the mind and behavior, with the goal of advancing human understanding, improving physical and mental health, and optimizing performance. This entails a broad, interdisciplinary effort that spans from molecules to minds. At one end, biology, chemistry, and physics are improving our understanding of the molecular and cellular mechanisms of neuronal signaling and development. At the other end, psychology, psychiatry, and computer science link neural processes and systems to the mind and behavior. At all levels, the rich array of methods and data analysis depends on a strong foundation in the basic sciences, mathematics, statistics, and computer science.

PREREQUISITES
The foundational biology courses required of all Neuroscience majors are BIOL 101, 102, 103, and 104. All majors must also complete one of the following: PSYC 200, S&DS 103, 105, 230, 238.

PLACEMENT PROCEDURES
When declaring the major, students are encouraged to send a completed Neuroscience major worksheet to the department registrar (neuroscience.registrar@yale.edu) to help with advising.

REQUIREMENTS OF THE MAJOR
A minimum of 18.5 credits is required, including the three prerequisites, 15 lecture or seminar courses (which include the senior requirement), and one laboratory, as follows:

1. Two Neuroscience foundation courses, NSCI 160 and 320.

2. One Neuroscience lab chosen from NSCI 229L, 258, 260, 270, 321L.

3. Eleven electives from the following core groupings, with a minimum of: two from the Systems/Circuits/Behavior Core, two from the Molecular/Cellular/Biological Core, one from the Quantitative Core, one from the Computational Core, and one from the Basic Allied Core. No more than two credits may be taken from the Other Allied Core.

 Systems/Circuits/Behavior Core: NSCI 340, 341, 346, 352, 355, 360, 440, 441, 442, 445; PSYC 238; NSCI 449

 Molecular/Cellular/Biological Core: NSCI 324, 325, 329, 420; MCDB 200, 202, 205, 210, 300, 310, 370, 450, 452; MB&B 300

 Quantitative Core: MATH 112, 115, 116, 120, 222, 225, 226, 230, 231, 244, 246, 247, 255, 256; ENAS 151; NSCI 324, 325; CPSC 202

 Computational Core: CPSC 100, 112, 201, 223, 323, 365, 470, 475, 476; ENAS 130; S&DS 123, 262, S&DS 355, 361; NSCI 453
Basic Allied Core: PHYS 170, 171, 180, 181, 200, 201, 260, 261; CHEM 161, 163, 165, 167, 174, 175, 220, 221

Other Allied Core: NSCI 141, 161, 240, 419, 455, 479; BENG 485; MCDB 250; CGSC 110; PSYC 110; one additional Neuroscience lab course from the list above

Credit/D/Fail No course taken Credit/D/Fail may be counted toward the major, including prerequisites.

Roadmap See visual roadmap of the requirements.

SENIOR REQUIREMENT
In addition to the course requirements described above, all students must satisfy a senior requirement undertaken during the senior year. All students must fill out a checklist of requirements and go over it with the undergraduate registrar by the spring term of the junior year.

B.S. degree program The B.S. degree program requires two course credits of empirical research, NSCI 490 and 491. These courses are only available to Neuroscience seniors and receive a letter grade. Students are expected to spend at least 10 hours per week in the laboratory, to complete written assignments, and to give a presentation. In addition to time in the lab, and as part of NSCI 490 and 491, students are expected to attend a semi-regular capstone seminar, to hear guest speakers and to discuss senior work progress with their peers and the directors of undergraduate studies (DUSes). Research can be conducted over original, archival, or consortium data sets. Written assignments include a short research proposal due at the beginning of the fall term, a grant proposal due at the end of the fall term, and a final report due at the end of the spring term. Students should pursue the same research project for two terms, with the grant proposal guiding and serving as the background for the research and final report. Seniors are also required to present their research in the spring term at a poster session. Students should find a research laboratory during the term preceding the research. Yale College does not grant academic credit for summer research unless the student is enrolled in an independent research course in Yale Summer Session. To register for NSCI 490 and 491, students must submit a form and the research plan with bibliography, approved by the faculty research adviser and a DUS, by the end of the first week of classes.

B.A. degree program The B.A. degree program requires two course credits in nonempirical research, NSCI 480 and 481; or one credit in nonempirical research, NSCI 480 or 481, and one credit in empirical research, NSCI 490 or 491. These courses are only open to Neuroscience seniors and receive a letter grade. Under faculty supervision, for NSCI 480 or 481, students are required to conduct original research for at least 10 hours per week that does not involve direct interaction with data, such as developing a theory or conducting a meta-analysis to synthesize existing findings. A literature review without novel intellectual contribution is not adequate. Written assignments include a short research plan due at the beginning of the fall term, a literature review or draft theoretical paper due at the end of the fall term, and a theoretical paper due at the end of the spring term. Seniors are also required to present their research in the spring term at a poster session. To register, students must submit
a form and the research plan with bibliography, approved by the faculty adviser and a DUS, by the end of the first week of classes.

More detailed guidelines, forms, and deadline information is available on the program website.

ADDITIONAL INFORMATION

Independent research courses before senior year. The only independent research courses available to students prior to senior year are NSCI 470, 471. These courses are graded Pass/Fail and count toward the thirty-six credits required for the bachelor’s degree, but they do not substitute for any NSCI major requirement, including the senior requirement. Independent research courses do not satisfy the lab requirement for the NSCI major.

ADVISING
Due to overlap in the major course requirements, the Neuroscience major should not be combined with a second major either in Molecular, Cellular and Developmental Biology or in Psychology.

Program advisers Each term, students should update their Neuroscience major worksheet and then meet with their assigned faculty adviser to discuss their schedule and review their worksheet. These documents should then be submitted to the Neuroscience registrar for DUS review and approval. For questions concerning credits for courses taken at other institutions, or courses not listed in Yale Course Search, students should contact the Neuroscience registrar.

REQUIREMENTS OF THE MAJOR

Prerequisites BIOL 101, 102, 103, and 104; and one of PSYC 200, S&DS 103, 105, 230, 238

Number of courses 18.5 credits (including prereqs and senior req)

Specific courses required 2 neuroscience foundation courses, NSCI 160 and 320

Distribution of courses B.S. or B.A. — 1 lab course; 11 electives including at least: 2 Systems/Circuits/Behavior Core courses, 2 Molecular/Cellular/Biological Core courses, 1 Quantitative Core course, 1 Computational Core course, 1 Basic Allied Core course, and no more than 2 Other Allied Core courses

Senior requirement B.S. — 2 empirical research courses, NSCI 490 and 491; B.A. — 2 nonempirical research courses, NSCI 480 and 481, or 1 empirical research course (NSCI 490 or 491) and 1 nonempirical research course (NSCI 480 or 481)

Neuroscience aims to understand how the brain produces the mind and behavior, with the goal of advancing human understanding, improving physical and mental health, and optimizing performance. This entails a broad, interdisciplinary effort that spans from molecules to minds. At one end, biology, chemistry, and physics are improving our understanding of the molecular and cellular mechanisms of neuronal signaling and development. At the other end, psychology, psychiatry, and computer science link neural processes and systems to the mind and behavior. At all levels, the rich array of methods and data analysis depends on a strong foundation in the basic sciences, mathematics, statistics, and computer science.
Jointly hosted by the Molecular, Cellular and Developmental Biology department and the Psychology department, the Neuroscience major provides excellent scientific preparation for graduate school, medical school and the health professions, and law school, as well as a wide range of professional careers in the biological sciences, technology, business, law, education, journalism, and public policy, to name a few.

As prerequisites, prospective majors should take the foundational biology sequence BIOL 101, 102, 103, and 104 in their first year and a course in statistics from PSYC 200, S&DS 103, 105, 230, 238 in their first or second year. Students can join the major with two of these three credits, as long as they have also completed one of the two foundational courses.

Indeed, prospective majors are encouraged to take the foundational course NSCI 160 as early as possible, as it is a requirement for the major, does not have prerequisites, and provides a general sense of the field of neuroscience. This course is also appropriate for nonmajors interested in neuroscience.

For additional information, visit the program website.

FACULTY OF THE NEUROSCIENCE MAJOR

Professors
†Amy Arnsten (School of Medicine, Psychology), Ty Cannon (Psychology), John Carlson (Molecular, Cellular and Developmental Biology), B. J. Casey (Psychology), Marvin Chun (Psychology), Paul Forscher (Molecular, Cellular and Developmental Biology), Jutta Joormann (Psychology), Douglas Kankel (Molecular, Cellular and Developmental Biology), Haig Keshishian (Molecular, Cellular and Developmental Biology), †John Krystal (School of Medicine, Psychology), Rajit Manohar (Electrical Engineering), †Linda Mayes (School of Medicine, Psychology), Greg McCarthy (Psychology), Laurie Santos (Psychology), †Dana Small (School of Medicine, Psychology), †Jane Taylor (School of Medicine, Psychology), Nick Turk-Browne (Psychology), Robert Wyman (Molecular, Cellular and Developmental Biology)

Associate Professors
†Alan Anticevic (School of Medicine, Psychology), Arielle Baskin-Sommers (Psychology), Abhishek Bhattacharjee (Computer Science), †Sreeganga Chandra (School of Medicine, Molecular, Cellular and Developmental Biology), Steve Chang (Psychology), Damon Clark (Molecular, Cellular and Developmental Biology), †Philip Corlett (School of Medicine, Psychology), Molly Crockett (Psychology), Thierry Emonet (Molecular, Cellular and Developmental Biology), Avram Holmes (Psychology), †Hedy Kober (School of Medicine, Psychology), Smita Krishnaswamy (Genetics), †Ifat Levy (School of Medicine, Psychology), †James McPartland (School of Medicine, Psychology), Weimin Zhong (Molecular, Cellular and Developmental Biology)

Assistant Professors
Dylan Gee (Psychology), Maria Gendron (Psychology), Julia Leonard (Psychology), Samuel McDougle (Psychology), †John Murray (School of Medicine, Physics), Michael O’Donnell (Molecular, Cellular and Developmental Biology), Priya Panda (Electrical Engineering), Robb Rutledge (Psychology), Ilker Yildirim (Psychology)

Lecturer
Stephanie Lazzaro (Psychology)

†A joint appointment with primary affiliation in another department or school.

View Courses
Courses

NSCI 141b / PSYC 141b, The Criminal Mind Arielle Baskin-Sommers
Theoretical and empirical study of the development of criminal behavior, including constitutional, social, and neurobiological elements. Personality and psychopathological factors associated with criminal behavior; theoretical and psychobiological explanations of crime; the biological/environment interaction; the impact of psychobiological models for policy and intervention.

NSCI 160a / PSYC 160a, The Human Brain Gregory McCarthy
Introduction to the neural bases of human psychological function, including social, cognitive, and affective processing. Preparation for more advanced courses in cognitive and social neuroscience. Topics include memory, reward processing, neuroeconomics, individual differences, emotion, social inferences, and clinical disorders. Neuroanatomy, neurophysiology, and neuropharmacology are also introduced.

* **NSCI 240b / PSYC 230b, Research Methods in Human Neuroscience** Gregory McCarthy
Primary focus on structural, functional, and diffusion magnetic resonance imaging, with a secondary emphasis upon brain stimulation, electroencephalography, and evoked potentials. Students learn the fundamentals of each method and the experimental designs for which they are most applicable. Prerequisites: PSYC 160/NSCI 160 and a course in statistics, or permission of instructor.

* **NSCI 258b / PSYC 258b, Computational Methods in Human Neuroscience** Nick Turk-Browne
This course provides training on how to use computational science for the advanced analysis of brain imaging data, primarily from functional magnetic resonance imaging (fMRI). Topics include scientific programming, high-performance computing, machine learning, network/graph analysis, real-time neurofeedback, nonparametric statistics, and functional alignment. Prerequisites: CPSC 100, CPSC 112 or other course involving terminal commands and programming (Python preferred); course in statistics and/or data science; PSYC 160 or other human neuroscience course; or permission of instructor.

* **NSCI 260a / PSYC 260a, Research Methods in Psychopathology: Psychotic Disorders** Tyrone Cannon
Methods of research in psychopathology. Focus on longitudinal designs, high-risk sampling approaches, prediction of outcomes, and modeling change over time. Students design and perform analyses of clinical, cognitive, genetic, neuroimaging and other kinds of measures as predictors of psychosis and related outcomes, using existing datasets supplied by the instructor.

* **NSCI 270a / PSYC 270a, Research Methods in Cognitive Neuroscience** Stephanie Lazzaro
This course introduces methods used by cognitive neuroscientists to discover the structural and functional features of the nervous system. A combination of lectures and hands-on lab activities help students understand the structure and function of the human brain.

QR, SC
NSCI 320a / MCDB 320a, Neurobiology Haig Keshishian and Paul Forscher
The excitability of the nerve cell membrane as a starting point for the study of
tmolecular, cellular, and systems-level mechanisms underlying the generation and
control of behavior. At least 1 semester of college chemistry is strongly recommended.
sc 0 Course cr

NSCI 321La / MCDB 321La, Laboratory for Neurobiology Haig Keshishian and Paul
Forscher
Introduction to the neurosciences. Projects include the study of neuronal excitability,
sensory transduction, CNS function, synaptic physiology, and neuroanatomy.
Concurrently with or after MCDB 320. sc ½ Course cr

NSCI 324a / BENG 230a / MB&B 330a / MCDB 330a, Modeling Biological Systems I
Thierry Emonet and Kathryn Miller-Jensen
Biological systems make sophisticated decisions at many levels. This course explores
the molecular and computational underpinnings of how these decisions are made, with
a focus on modeling static and dynamic processes in example biological systems. This
course is aimed at biology students and teaches the analytic and computational methods
needed to model genetic networks and protein signaling pathways. Students present
and discuss original papers in class. They learn to model using MatLab in a series of
in-class hackathons that illustrate the biological examples discussed in the lectures.
Biological systems and processes that are modeled include: (i) gene expression,
including the kinetics of RNA and protein synthesis and degradation; (ii) activators
and repressors; (iii) the lysogeny/lysis switch of lambda phage; (iv) network motifs
and how they shape response dynamics; (v) cell signaling, MAP kinase networks and
cell fate decisions; and (vi) noise in gene expression. Prerequisites: MATH 115 or 116.
BIOL 101-104, or with permission of instructors. This course also benefits students
who have taken more advanced biology courses (e.g. MCDB 200, MCDB 310, MB&B
300/301). QR, sc 0 Course cr

NSCI 325b / BENG 465b / MB&B 361b / MCDB 361b, Modeling Biological Systems II
Jonathan Howard, Thierry Emonet, and Damon Clark
Advanced topics related to dynamical processes in biological systems. Processes by
which cells compute, count, tell time, oscillate, and generate spatial patterns. Time-
dependent dynamics in regulatory, signal-transduction, and neuronal networks;
fluctuations, growth, and form. Comparisons between models and experimental
data. Dynamical models applied to neurons, neural systems, and cellular biophysical
processes. Use of MATLAB to create models. Prerequisite: MCDB 330 or equivalent, or
a 200-level biology course, or with permission of instructor. QR

NSCI 329a / MCDB 329a, Sensory Neuroscience Through Illusions Damon Clark
and Michael O’Donnell
Animals use sensory systems to obtain and process information about the environment
around them. Sensory illusions occur when our sensory systems provide us with
surprising or unexpected percepts of the world. The goal of this course is to introduce
students to sensory neuroscience at the levels of sensor physiology and of the neural
circuits that process information from sensors. The course is centered around sensory
illusions, which are special cases of sensory processing that can be especially illustrative,
as well as delightful. These special cases are used to learn about the general principles
that organize sensation across modalities and species. Prerequisites: BIOL 101-104; NSCI 160 or NSCI 320 or permission of instructor. sc

* NSCI 440a or b / CGSC 420a or b / PSYC 420a or b, Topics in Clinical Neuroscience
Avram Holmes
An overview and examination of the neuroscience of psychiatric illness. We focus on cutting-edge research in humans and animals aimed at understanding the biological mechanisms that underlie psychiatric illness. Although these questions date back to early philosophical texts, only recently have experimental psychologists and neuroscientists begun to explore this vast and exciting domain of study. We discuss the evolutionary and developmental origins of individual differences in human personality, measurement issues, fundamental dimensions of psychopathology, stability/plasticity, heritability, and implications therapeutic interventions as well as the associated broader implications for public policy. A major focus is on the neurobiology of fear and anxiety, including brain circuits, molecular genetic pathways, and epigenetics. A secondary focus is on differences in behavior and biology that confer risk for the development of depression and addiction, including the biological systems involved in hedonic pleasure, motivated goal pursuit, and the regulation of impulses in the face of everyday temptation. Students should have some background in psychology; PSYC 110 and PSYC 160 preferred. so

* NSCI 441a / PSYC 438a, Computational Models of Human Behavior
Robb Rutledge
Why do we do the things we do? How do we adapt to changes in the environment? And how does our happiness depend on our choices and what happens to us? How can computational models help us to gain new insights into psychological processes? The goal of this course is to use computational models to understand human behavior and its relationship to our emotions. Data is collected in a variety of tasks including new experiments designed by students, and is analyzed using computational models. CPSC 112 or other course involving programming (e.g., C++, Java, Python, Matlab), or permission of instructor. sc

[NSCI 445, Systems Neuroscience]

* NSCI 449a / PSYC 449a, Neuroscience of Social Interaction
Steve Chang
This seminar covers influential studies that inform how the brain enables complex social interactions from the perspectives of neural mechanisms. Students thoroughly read selected original research papers in the field of social neuroscience across several animal species and multiple modern neuroscience methodologies. In class, the instructor and students work together to discuss these studies in depth. Focused topics include neural mechanisms behind brain-to-brain coupling, empathy, prosocial decision-making, oxytocin effects, and social dysfunction. Prerequisite: PSYC 160 or permission from the instructor. sc

* NSCI 470a, Independent Research
Damon Clark and Steve Chang
Research project under faculty supervision taken Pass/Fail; does not count toward the major, but does count toward graduation requirements. Students are expected to spend approximately ten hours per week in the laboratory. A final research report and/ or presentation is required by end of term. Students who take this course more than once must reapply each term. To register, students must submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the
end of the first week of class. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.

* NSCI 480a, Senior Non-empirical Research
Damon Clark and Steve Chang
Research survey under faculty supervision fulfills the senior requirement for the B.A. degree and awards a letter grade. For NSCI seniors only (and second term juniors with DUS permission). Students are expected to conduct a literature review, to complete written assignments, and to present their research once in either the fall or spring term. Students are encouraged to pursue the same research project for two terms. The final research paper is due in the hands of the sponsoring faculty member, with a copy submitted to the department, by the stated deadline near the end of the term. To register, students submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the end of the first week of classes. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.

* NSCI 490a, Senior Empirical Research
Damon Clark and Steve Chang
Laboratory or independent empirical research project under faculty supervision to fulfill the senior requirement for the B.S. degree. For NSCI seniors only (and second term juniors with DUS permission); this course awards a letter grade. Students are expected to spend at least ten hours per week in the laboratory, to complete written assignments, and to present their research once in either the fall or the spring term. Written assignments include a short research proposal summary due at the beginning of the term and a full research report due at the end of the term. Students are encouraged to pursue the same research project for two terms, in which case, the first term research report and the second term proposal summary may be combined into a full research proposal due at the end of the first term. Final papers are due by the stated deadline. Students should reserve a research laboratory during the term preceding the research. To register, students must submit a form and written plan of study with bibliography, approved by the faculty research adviser and DUS, by the end of the first week of classes. More detailed guidelines and forms can be obtained from http://neuroscience.yale.edu.