TRANSLATIONAL BIOMEDICINE

Boyer Center for Molecular Medicine 254D, 203.737.4628
https://medicine.yale.edu/ptb/
M.S., M.Phil., Ph.D.

Director
Megan King

Associate Director
Richard Kibbey

Directors of Graduate Studies
Richard Kibbey
Megan King

Professors Nita Ahuja (Surgery; Pathology), Anton Bennett (Comparative Medicine; Pharmacology), Angelique Bordey (Neurosurgery), Lloyd Cantley (Internal Medicine/Nephrology; Physiology), Keith Choate (Dermatology), Marie Egan (Pediatrics; Cellular & Molecular Physiology), Fred Gorelick (Internal Medicine – Digestive Diseases; Cell Biology), Jaime Grutzendler (Neurology), David Hafler (Immunology; Neurology), Erica Herzog (Pathology; Pulmonary, Critical Care & Sleep Medicine), Mustafa Khokha (Genetics; Pediatrics), Diane Krause (Cell Biology; Laboratory Medicine; Pathology), Ruth Montgomery (Epidemiology; Pathology), David Zenisek (Cellular & Molecular Physiology; Ophthalmology)

Associate Professors Emanuela Bruscia (Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine), Christopher Bunick (Dermatology), Monique Hinchcliff (Rheumatology), Richard Kibbey (Cellular & Molecular Physiology; Internal Medicine/Endocrinology), Megan King (Cell Biology; Molecular, Cellular, and Developmental Biology; Therapeutic Radiology), Don Nguyen (Pathology), Faye Rogers (Therapeutic Radiology), Kurt Schalper (Medical Oncology; Pathology)

Assistant Professors Vikas Gupta (Internal Medicine/Endocrinology; Digestive Diseases), Brian Hafler (Ophthalmology; Pathology), Liza Konnikova (Neonatal-Perinatal Medicine), Emily Olfson (Child Study Center), Aaron Ring (Immunology)

Lecturer Agnès Vignery (Cell Biology)

FIELDS OF STUDY
Students seeking admission into the Ph.D. program in Translational Biomedicine (PTB) apply to the Translational Molecular Medicine, Pharmacology, and Physiology (TMMPP) track within the interdepartmental graduate program in Biological and Biomedical Sciences (BBS), https://medicine.yale.edu/bbs/molmed/.

SPECIAL REQUIREMENTS FOR THE PH.D. DEGREE

The primary mission of the PTB is to prepare the next generation of translational scientists to be forward-thinking leaders in academic research, medicine, education, industry, and society. To achieve this mission, the PTB leverages its interdepartmental structure to break down silos between disciplines and to foster a collaborative community comprising laboratories across all the departments at the Yale School of Medicine. The PTB emphasizes a flexible curriculum, personalized professional development, and a supportive environment in which all participants can reach their full potential.

The first three to four terms of graduate study are spent in formal course work, independent reading, laboratory rotations, and early thesis work. Each student’s program of study is designed in consultation with the TMMPP Track Director during the first year and with an advisory committee of the PTB that includes the PTB Director of Graduate Studies once the student affiliates with the PTB, typically in the spring of the first year of study. The goal is to provide flexibility, rigor, and breadth while ensuring that students are well prepared to meet the PTB course requirements and to have a strong foundation for their thesis research. Students also participate in at least three laboratory rotations during their first two terms.

PTB coursework includes at least five graduate-level courses typically taken over the first four terms. Students must meet the Graduate School requirement of a grade of Honors in two courses, taking additional courses to fulfill this requirement if necessary. The Graduate School requires this requirement be met by the end of the second year.

PTB students are expected to take at least one of the following: C&MP 550a, PATH 690b, or PHAR 504a; as well as CBIO 604 and the year-long graduate seminar course in the TMMPP Track. They are also required to take one course in biostatistics (from several offered). In their second year, PTB students are required to take 4 modules (1 year) of the Mentored Clinical Experience (MCE) and the PTB Grant Writing Course.

A qualifying examination is given during the second year of study and consists of a written research proposal based on the proposed thesis project followed by an oral exam. Within one year after a successful qualifying exam, the student schedules the first thesis committee meeting and provides an updated summary of the thesis project (in the form of a revised Specific Aims page). At this meeting the student is considered for advancement to candidacy, which must occur prior to the end of year three. In addition to all other requirements, students must successfully complete the Responsible Conduct in Research course (PHAR 580/C&MP 650/PATH 660) prior to the end of their first year of study. In their fourth year of study, all students must successfully complete B&BS 503, the RCR Refresher for Senior BBS Students.

An important dimension of graduate training in the program in Translational Biomedicine is the acquisition of teaching skills through participation in courses
appropriate for the student’s academic interests. Ph.D. students are expected to participate in two terms (or the equivalent) of teaching.

M.D./PH.D. STUDENTS

M.D./Ph.D. students who affiliate with the Ph.D. program in Translational Biomedicine follow a different course than other incoming graduate students, resulting in some modifications of the academic requirements for the Ph.D. portion of the M.D./Ph.D. degree. Typically, one or more research rotations are done during the first two years of medical school. (In many cases, several rotations are done during the summer between year one and year two.) No set number of research rotations is required. M.D./Ph.D. students officially affiliate with the Ph.D. program in Translational Biomedicine after selecting a thesis adviser and consulting with the Director of Graduate Studies (DGS). M.D./Ph.D. students interested in affiliating with the PTB are encouraged to consult with the DGS as early as possible to determine an appropriate set of courses tailored to the student’s background and interests.

The courses, rotations, and teaching requirements for M.D./Ph.D. students entering the PTB (see below) may be modified from the normal requirements for Ph.D. students with permission of the DGS. Although five graduate-level courses are still required, some medical school courses are recognized. M.D./Ph.D. students must also meet the Graduate School requirement of a grade of Honors in two courses, taking additional courses beyond the five required in the department to fulfill this requirement if necessary. Students must also maintain an average grade of High Pass in all courses. M.D./Ph.D. students are also not required to take the MCE course. In addition, only one term of teaching is required.

M.D./Ph.D. students will be admitted to candidacy once they have completed their course work, obtained two Honors grades, passed their qualifying exam, and had their dissertation prospectus accepted by their thesis committee.

MASTER’S DEGREES

M.Phil. See Degree Requirements under Policies and Regulations.

M.S. Students are not admitted for this degree. They may receive this recognition if they leave Yale without completing the qualifying exam but have satisfied the course requirements as described above as well as the Graduate School’s Honors requirement. Students who are eligible for or who have already received the M.Phil. will not be awarded the M.S.

Prospective applicants are encouraged to visit the PTB website at https://medicine.yale.edu/ptb.

COURSES

PHAR 504a / PTB 504a, Molecular Mechanisms of Drug Actions - Elias Lolis

This course covers the molecular mechanisms of therapeutics, which are presented in a conceptual framework to increase understanding but decrease memorization. Topics include (but are not limited to) receptor affinity, efficacy, multiple equilibria, pharmacokinetics, and toxicity; enzyme kinetics and inhibition, drug discovery and design; molecular basis of antimicrobial therapy, cardiology drugs, anticancer and antiviral therapies; and therapeutics for inflammatory disorders, asthma, and allergy.
The course develops a foundation in human physiology by examining the homeostasis of vital parameters within the body, and the biophysical properties of cells, tissues, and organs. Basic concepts in cell and membrane physiology are synthesized through exploring the function of skeletal, smooth, and cardiac muscle. The physical basis of blood flow, mechanisms of vascular exchange, cardiac performance, and regulation of overall circulatory function are discussed. Respiratory physiology explores the mechanics of ventilation, gas diffusion, and acid-base balance. Renal physiology examines the formation and composition of urine and the regulation of electrolyte, fluid, and acid-base balance. Organs of the digestive system are discussed from the perspective of substrate metabolism and energy balance. Hormonal regulation is applied to metabolic control and to calcium, water, and electrolyte balance. The biology of nerve cells is addressed with emphasis on synaptic transmission and simple neuronal circuits within the central nervous system. The special senses are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics. Graduate students evaluate research findings through literature review and weekly meetings with the instructor.

MWF 9:25am-10:15am

CBIO 604b / PTB 604b, Physiologic Function and Cellular Structure of Organ Systems Agnes Vignery and Richard Kibbey
Introduction to the organization and function of cells within complex multicellular systems as encountered in the human body. Covers major tissues and organs as well as the cardiovascular, immune, and nervous systems, with special emphasis on the molecular and cellular bases of developmental processes and human diseases. Lectures supplemented by electronic-based tutorials on the histology of tissues and organs.
TTh 9:30am-11am

PATH 690a / PTB690a, Molecular Mechanisms of Disease Demetrios Braddock and Carlos Fernandez-Hernando
This course covers aspects of the fundamental molecular and cellular mechanisms underlying various human diseases. Many of the disorders discussed represent major forms of infectious, degenerative, vascular, neoplastic, and inflammatory disease. Additionally, certain rarer diseases that illustrate good models for investigation and/or application of basic biologic principles are covered in the course. The objective is to highlight advances in experimental and molecular medicine as they relate to understanding the pathogenesis of disease and the formulation of therapies.
TTh 1pm-2:15pm