CHEMISTRY (CHEM)

CHEM 134La, General Chemistry Laboratory I Jonathan Parr
An introduction to basic chemistry laboratory methods. Techniques required for quantitative analysis of thermodynamic processes and the properties of gases. To accompany or follow CHEM 161 or 163. May not be taken after a higher-numbered laboratory course. SC RP O Course cr

CHEM 136La, General Chemistry Laboratory II Staff
Introduction to rate and equilibrium measurements, acid-base chemistry, synthesis of inorganic compounds, and qualitative/quantitative analysis. After CHEM 134L or the equivalent in advanced placement. To accompany or follow CHEM 165 or 167. May not be taken after a higher-numbered laboratory course. SC RP O Course cr

* CHEM 161a, General Chemistry I Nilay Hazari
A comprehensive survey of modern descriptive, inorganic, and physical chemistry. Atomic theory, stoichiometry, thermochemistry, chemical periodicity, concepts in chemical bonding, and the shapes of molecules. Appropriate either as a first chemistry course or for students with one year of high school chemistry. Attendance at a weekly discussion section required. Normally accompanied by CHEM 134L. QR, SC RP O Course cr

* CHEM 163a, Advanced General Chemistry I James Mayer
An in-depth examination of the principles of atomic, molecular, and solid state chemistry, including structures, periodicity, and chemical reactivity. Topics include the quantum mechanics of atoms and chemical bonding, and inorganic, organic, and solid state molecules and materials. For students with strong secondary school exposure to general chemistry. Attendance at a weekly discussion section required. Normally accompanied by CHEM 134L. Enrollment by placement only. QR, SC RP O Course cr

* CHEM 165a, General Chemistry II Paul Cooper
Topics include kinetics, chemical equilibrium, acid-base chemistry, free energy and entropy, electrochemistry, and nuclear chemistry. Attendance at a weekly discussion section required. Prerequisite: CHEM 161. Normally accompanied by CHEM 136L. Enrollment by placement only. QR, SC RP O Course cr

* CHEM 174a, Organic Chemistry for First Year Students I Seth Herzon
An introductory course focused on current theories of structure and mechanism in organic chemistry, their development, and their basis in experimental observation. Open to first-year students with excellent preparation in chemistry, mathematics, and physics who have taken the department’s advanced chemistry placement examination. Attendance at a weekly discussion section required. Normally accompanied by CHEM 222L. Enrollment by placement only. SC RP O Course cr

CHEM 220a, Organic Chemistry Sarah Slavoff
An introductory course covering the fundamental principles of organic chemistry. The laboratory for this course is CHEM 222L. After college-level general chemistry. Students who have earned a grade lower than C in general chemistry are cautioned that they may not be sufficiently prepared for this course. Usually followed by CHEM 221 or 230. SC RP O Course cr
CHEM 222La, Laboratory for Organic Chemistry I Christine DiMeglio
First term of an introductory laboratory sequence covering basic synthetic and analytic
techniques in organic chemistry. Prerequisite: CHEM 136L or equivalent. After or
concurrently with CHEM 174 or 220. SC 0 Course cr

CHEM 226La, Intensive Advanced Chemistry Laboratory Christine DiMeglio
An intensive course in advanced chemistry laboratory technique intended to bring the
student closer to independent research. Included are an independent laboratory project
and presentation, introduction to library research, and training in the use of various
analytical techniques. Offered subject to available laboratory space and sufficient
enrollment. After CHEM 223L. Enrollment is limited; e-mail course instructor for
enrollment procedure. WR, SC RP

CHEM 330La, Laboratory for Physical Chemistry I Paul Cooper
Introduction to the tools and techniques of modern experimental physical
chemistry, including analog/digital electronics, quantitative measurements of basic
thermodynamic properties, and nuclear magnetic resonance spectrometry. After or
concurrently with CHEM 328 or 332. SC RP 0 Course cr

* CHEM 332a, Physical Chemistry with Applications in the Physical Sciences I
Tianyu Zhu
A comprehensive survey of modern physical and theoretical chemistry, including topics
drawn from thermodynamics, chemical equilibrium, electrochemistry, and kinetics.
Prerequisites: introductory physics, college-level general chemistry, and single-variable
calculus, or permission of instructor; MATH 120 or ENAS 151 suggested. May not be
taken after CHEM 328. QR, SC RP 0 Course cr

* CHEM 400a, Current Chemistry Seminar Staff
Designed to engage students in the Chemistry research-seminar program by providing
requisite scientific guidance and a forum for directed discussion. Participants explore
current avenues of chemical research as presented orally by the prime movers in the
field, thereby exploring the frontiers of current knowledge while still retaining the
structured environment of a classroom. May fulfill all or part of the senior requirement
for the Chemistry major, as detailed in the program description in the YCPS.

CHEM 402a, Fundamentals of Transition Metal Chemistry Patrick Holland
This half-term course covers the structures and properties of coordination compounds,
and strategies for the design and analysis of new compounds. Elements of chelating
ligands, spectroscopic methods, and magnetism are addressed. Prerequisites: Two
terms of organic chemistry, and Chem 252 or equivalent. SC ½ Course cr

CHEM 408a, Principles of Materials Chemistry Hailiang Wang
This course is an advanced introduction to materials chemistry. It aims to serve senior
undergraduate students who are interested in learning and applying chemical principles
for materials research and applications. Fundamental principles in solid-state chemistry,
including crystal structures and chemical interactions, will be taught. Ionics, metal,
semiconductor and polymer materials, including their synthesis, structures, properties
and applications, will be discussed. Prerequisite: General chemistry, inorganic
chemistry and physical chemistry, or equivalent experience. SC ½ Course cr

CHEM 416a, Organic Structure and Energetics William Jorgensen
The course covers concepts in physical organic chemistry including molecular structure
& bonding, conformational energetics, electronic effects, thermochemistry, ring
strain, non-covalent interactions, molecular recognition, and host-guest chemistry. Prerequisites: Two terms of organic chemistry and two terms of physical chemistry or related courses or permission of the instructor. SC ½ Course cr

CHEM 417a, Kinetics and Thermodynamics in Organic Systems William Jorgensen
The course generally follows Organic Structure and Energetics. This module covers concepts in physical organic chemistry including acid-base chemistry, advanced issues in stereochemistry, kinetics and thermodynamics, as well as experiments and techniques employed in mechanistic analysis. Issues in catalysis are addressed throughout. Prerequisites: CHEM 416 and two terms of introductory organic chemistry, and two terms of physical chemistry. Permission of the instructor may be sought for potential exceptions. SC ½ Course cr

CHEM 419a, Foundations of Chemical Biology Jason Crawford
Chemical biology is a rapidly developing field at the interface of chemical and biological sciences. This subject deals with how chemistry can be applied to manipulate and study biological problems using a combination of experimental techniques ranging from organic chemistry, analytical chemistry, biochemistry, molecular biology, biophysical chemistry and cell biology. The purpose of this course is to teach students the core skills that are used by scientists at the interface of chemistry and biology. The course transitions into Chemical Biology II, where students learn more about therapeutic applications of chemical biology. Prerequisites: Two terms of both general chemistry and organic chemistry. SC ½ Course cr

CHEM 432a, Synthetic Methods in Organic Chemistry I Jon Ellman
Compound synthesis is essential to the discovery and development of new chemical entities with a desired property whether that be for fundamental study or for a more applied goal such as a new pharmaceutical, agrochemical, or material. In this course we emphasize key transformations and principles to provide a framework for the efficient design and synthesis of organic compounds. Prerequisites: Two terms of organic chemistry and one term of introductory inorganic chemistry, or related course, or permission of the instructor. SC ½ Course cr

CHEM 433a, Synthetic Methods in Organic Chemistry II Timothy Newhouse
Compound synthesis is essential to the discovery and development of new chemical entities with a desired property whether that be for fundamental study or for a more applied goal such as a new pharmaceutical, agrochemical, or material. In this course we emphasize key transformations and principles to provide a framework for the efficient design and synthesis of organic compounds. This course builds on the knowledge learned in CHEM 432. Prerequisite: CHEM 432 or permission of instructor. SC ½ Course cr

CHEM 466a, Introduction to Quantum Mechanics 1 Sharon Hammes-Schiffer
A half-term introduction to quantum mechanics, starting with the Schrödinger equation and covering model systems such as particle-in-a-box and harmonic oscillator. The fundamental postulates and theorems of quantum mechanics are also covered. Prerequisite: Physical chemistry, multivariable calculus or equivalent experience, or permission of instructor. SC ½ Course cr

CHEM 467a, Introduction to Quantum Mechanics 2 Sharon Hammes-Schiffer
Continuation of an introduction to quantum mechanics, starting with angular momentum and the hydrogen atom, and then covering approximate methods such as
the variation method and perturbation theory. The concepts of electron spin as well as Hartree-Fock theory and other electronic structure methods for describing molecules are covered. Half-term course. Prerequisite: CHEM 467, or multivariable calculus or equivalent experience. **SC ½ Course cr**

* CHEM 472a, Introduction to Statistical Mechanics 1 Victor Batista
A half-term introduction to modern statistical mechanics, starting with fundamental concepts on quantum statistical mechanics to establish a microscopic derivation of statistical thermodynamics. Topics include ensembles, Fermi, Bose and Boltzmann statistics, density matrices, mean field theories, phase transitions, chemical reaction dynamics, time-correlation functions, Monte Carlo simulations and Molecular Dynamics simulations. Prerequisites: Physical chemistry, multivariable calculus or equivalent experience. **SC ½ Course cr**

* CHEM 473a, Introduction to Statistical Mechanics 2 Victor Batista
A half-term continuation of the introduction to modern statistical mechanics, with focus on quantum statistical mechanics of liquids, Monte Carlo methods and linear response theory (Chapters 6-8 of the textbook). Classical results are obtained according to the classical limit of the quantum mechanical description. Topics include the Monte Carlo simulations and Molecular Dynamics simulations for the description of the Ising model, fluids, solvation of solutes, alchemist free energy calculations, kinetics and transport properties. Prerequisites: Physical chemistry, multivariable calculus or equivalent experience. **SC ½ Course cr**

* CHEM 480a, Introduction to Independent Research in Chemistry Patrick Vaccaro
After consultation with the DUS, students engage individual experimental and/or theoretical research problems in the laboratories of a selected faculty member within the Chemistry department. At the end of the term, students submit a brief report summarizing goals, methods, and accomplishments. For each term of enrollment, students must complete the CHEM 480 registration form, available in the DUS office, and have it signed by their faculty research mentor. It must be submitted to the Chemistry DUS for final approval no later than the last week of classes in the immediately preceding academic term. Individuals wishing to perform independent research must have demonstrated proficiency in the aspects of chemistry required for the planned project, as ascertained by the supervising faculty member, and must meet basic safety requirements prior to undertaking any activities, including certified completion of the online courses entitled Laboratory Chemical Training and Hazardous Chemical Waste Training administered by the Office of Environmental Health and Safety (EHS) at http://ehs.yale.edu/training. At least ten hours per week of research are required (including time spent on requisite safety training), with the faculty mentor affirming this level of student commitment by midterm. This course may be taken multiple times for Pass/Fail credit, subject to restrictions imposed by Yale College. **RP**

* CHEM 490a, Independent Research in Chemistry Jonathan Parr
Senior Chemistry majors engage individual experimental and/or theoretical research problems in the laboratories of a selected faculty member in the Chemistry department or in a closely related field of molecular science. CHEM 490 registration forms, found in the DUS office, must be signed by the student’s faculty research mentor and submitted it to the Chemistry DUS for final approval no later than the last week of classes in the immediately preceding academic term. Mandatory class meetings address issues of essential laboratory safety and ethics in science, with other class sessions
focusing on core topics of broad interest to Chemistry students, including online literary research, oral presentation skills, and effective scientific writing. At least ten hours of research are required per week. Students are assigned letter grades, subject to restrictions imposed by Yale College. In special cases and with DUS approval, juniors may take this course. RP