CHEMISTRY (CHEM)

CHEM 134La or b, General Chemistry Laboratory I Staff
An introduction to basic chemistry laboratory methods. Techniques required for quantitative analysis of thermodynamic processes and the properties of gases. To accompany or follow CHEM 161 or 163. May not be taken after a higher-numbered laboratory course. SC RP o Course cr

CHEM 136La or b, General Chemistry Laboratory II Staff
Introduction to rate and equilibrium measurements, acid-base chemistry, synthesis of inorganic compounds, and qualitative/quantitative analysis. After CHEM 134L or the equivalent in advanced placement. To accompany or follow CHEM 165 or 167. May not be taken after a higher-numbered laboratory course. SC RP o Course cr

* CHEM 161a or b, General Chemistry I Staff
A comprehensive survey of modern descriptive, inorganic, and physical chemistry. Atomic theory, stoichiometry, thermochemistry, chemical periodicity, concepts in chemical bonding, and the shapes of molecules. Appropriate either as a first chemistry course or for students with one year of high school chemistry. Attendance at a weekly discussion section required. Normally accompanied by CHEM 134L. QR, SC RP o Course cr

* CHEM 163a, Advanced General Chemistry I Staff
An in-depth examination of the principles of atomic, molecular, and solid state chemistry, including structures, periodicity, and chemical reactivity. Topics include the quantum mechanics of atoms and chemical bonding, and inorganic, organic, and solid state molecules and materials. For students with strong secondary school exposure to general chemistry. Attendance at a weekly discussion section required. Normally accompanied by CHEM 134L. Enrollment by placement only. QR, SC RP o Course cr

* CHEM 165a or b, General Chemistry II Staff
Topics include kinetics, chemical equilibrium, acid-base chemistry, free energy and entropy, electrochemistry, and nuclear chemistry. Attendance at a weekly discussion section required. Prerequisite: CHEM 161. Normally accompanied by CHEM 136L. Enrollment by placement only. QR, SC RP o Course cr

* CHEM 167b, Advanced General Chemistry II Hailiang Wang
Topics include kinetics, chemical equilibrium, acid-base chemistry, free energy and entropy, electrochemistry, and nuclear chemistry. Attendance at a weekly discussion section required. Prerequisite: CHEM 163, or with equivalent placement. Normally accompanied by CHEM 136L. Enrollment by placement only. QR, SC RP o Course cr

* CHEM 174a, Organic Chemistry for First Year Students I Staff
An introductory course focused on current theories of structure and mechanism in organic chemistry, their development, and their basis in experimental observation. Open to first-year students with excellent preparation in chemistry, mathematics, and physics who have taken the department's advanced chemistry placement examination. Attendance at a weekly discussion section required. Normally accompanied by CHEM 222L. Enrollment by placement only. SC RP o Course cr
* CHEM 175b, Organic Chemistry for First Year Students II David Spiegel
Continuation of CHEM 174. Survey of simple and complex reaction mechanisms,
spectroscopy, organic synthesis, and the molecules of nature. Attendance at a weekly
discussion section required. After CHEM 174. Normally accompanied by CHEM 223L.
Enrollment by placement only. SC RP O Course cr

CHEM 220a or b, Organic Chemistry Staff
An introductory course covering the fundamental principles of organic chemistry. The
laboratory for this course is CHEM 222L. After college-level general chemistry. Students
who have earned a grade lower than C in general chemistry are cautioned that they may
not be sufficiently prepared for this course. Usually followed by CHEM 221 or 230. SC
RP O Course cr

CHEM 221b, The Organic Chemistry of Life Processes Scott Miller
The principles of organic reactivity and how they form the basis for biological
processes. The laboratory for this course is CHEM 223L. After CHEM 220. Students
who have earned a grade lower than C in CHEM 220 are cautioned that they may not be
sufficiently prepared for this course. SC RP O Course cr

CHEM 222La or b, Laboratory for Organic Chemistry I Staff
First term of an introductory laboratory sequence covering basic synthetic and analytic
techniques in organic chemistry. Prerequisite: CHEM 136L or equivalent. After or
concurrently with CHEM 174 or 220. SC O Course cr

CHEM 223Lb, Laboratory for Organic Chemistry II Christine DiMeglio
Second term of an introductory laboratory sequence covering basic synthetic
and analytic techniques in organic chemistry. Prerequisite: CHEM 222L. After or
concurrently with CHEM 175, 221, or 230. SC O Course cr

* CHEM 226La, Advanced Chemistry Lab Christine DiMeglio
An advanced course in chemistry laboratory technique intended to develop student
independence and confidence with planning and executing experimental procedures,
while performing synthetic and analytical experiments. The course includes
workshops, interactions with specialists in instrumentation, library science, and
safety, an individual project, and training in the use of various instrumentation and
techniques. Students must have received a grade for General Chemistry Lab I and II
(CHEM 134L and 136L), or their equivalents, such as a college course elsewhere or the
Chemistry Department placement exam. Organic Chemistry Lecture I and II (CHEM
220 and 221) and Organic Chemistry Labs I and II (CHEM 222L and CHEM 223L),
or their equivalents are also pre-requisites. Enrollment is limited; capped to 7 people.
Please e-mail course instructor to be put on a waitlist if cap is reached. WR, SC RP

CHEM 251Lb, Inorganic Chemistry Laboratory Jonathan Parr
Introductory laboratory course covering synthetic and physical characterization
techniques in inorganic chemistry. Prerequisite: 222L; concurrently with or after CHEM
252. SC O Course cr

CHEM 252b, Introductory Inorganic Chemistry Patrick Holland
Principles and applications of modern inorganic chemistry. Introduction to some of the
fundamental concepts of solid-state chemistry, coordination chemistry, bioinorganic
chemistry, and organometallic chemistry. Prerequisite: college-level general chemistry.
Chemistry (CHEM)

After or concurrently with CHEM 220 or by permission of instructor. May not be taken after CHEM 450, 452, or 457. SC RP o Course cr

CHEM 319b, Chemical Biology: Chemical Dissection & Reprogramming of Biological Systems Stacy Malaker
This course is organized around the central dogma of life, progressing from genes to proteins and higher-order cellular structures, including core application areas such as imaging, chemical genetics, activity-based protein profiling, and natural product discovery and biosynthesis. Prerequisites: CHEM 220 and CHEM 221. SC o Course cr

CHEM 330La, Laboratory for Physical Chemistry I Staff
Introduction to the tools and techniques of modern experimental physical chemistry, including analog/digital electronics, quantitative measurements of basic thermodynamic properties, and nuclear magnetic resonance spectrometry. After or concurrently with CHEM 328 or 332. SC RP o Course cr

CHEM 331Lb, Laboratory for Physical Chemistry II Paul Cooper
Application of physical methods to chemical analysis by spectroscopic and spectrometric techniques. Please see the course syllabus for details regarding course registration. After CHEM 330L. After or concurrently with CHEM 333. SC RP o Course cr

* CHEM 332a, Physical Chemistry with Applications in the Physical Sciences I Staff
CHEM 332 is an introductory course to fundamentals of physical chemistry, with an emphasis on macroscopic phenomena in chemical, physical, and biological systems. This course covers topics including fundamental laws of thermodynamics, properties of gases, phase equilibrium and transition, properties of solutions, chemical equilibrium, and chemical kinetics. This course, together with CHEM 333, provides a foundation for understanding the connection between chemistry and physics as well as theoretical chemistry. Prerequisites: introductory physics (PHYS 170), college-level general chemistry (CHEM 161/165 and/or CHEM 163/167), and single-variable calculus (MATH 120, ENAS 151, or upper-level MATH equivalents, all taken for a grade. May not be taken after CHEM 328. QR, SC RP o Course cr

* CHEM 333b, Physical Chemistry with Applications in the Physical Sciences II Patrick Vaccaro
Continuation of CHEM 332, including topics drawn from quantum mechanics, atomic/molecular structure, spectroscopy, and statistical thermodynamics. Prerequisite: CHEM 328 or 332, or permission of instructor. QR, SC RP o Course cr

* CHEM 400a, Current Chemistry Seminar Patrick Holland, Paul Cooper, Christine DiMeglio, and Jonathan Parr
Designed to engage students in the Chemistry research-seminar program by providing requisite scientific guidance and a forum for directed discussion. Participants explore current avenues of chemical research as presented orally by the prime movers in the field, thereby exploring the frontiers of current knowledge while still retaining the structured environment of a classroom. May fulfill all or part of the senior requirement for the Chemistry major, as detailed in the program description in the YCPS.

CHEM 402a, Fundamentals of Transition Metal Chemistry Patrick Holland
This half-term course covers the structures and properties of coordination compounds, and strategies for the design and analysis of new compounds. Elements of chelating
ligands, spectroscopic methods, and magnetism are addressed. Prerequisites: Two
terms of organic chemistry, and Chem 252 or equivalent. sc ½ Course cr

CHEM 403b, Fundamentals of Organometallic Chemistry Nilay Hazari
A half-term survey of the main principles of organometallic chemistry that enable
students to understand basic concepts in the field. It prepares students for CHEM
404, Applications of Organometallic Chemistry, the second half of this course.
Prerequisites: Two terms of organic chemistry and Chem 252 or equivalent experience.
sc ½ Course cr

CHEM 404b, Applications of Organometallic Chemistry Nilay Hazari
A half-term survey of the applications of organometallic chemistry that demonstrates
to students the range of areas where organometallic reactions are important. It builds
on the knowledge learned in CHEM 403, Fundamentals of Organometallic Chemistry.
Prerequisites: Two terms of organic chemistry, one of CHEM 252, and CHEM 403 or
equivalent experience. sc ½ Course cr

CHEM 405b, Inorganic Reaction Mechanisms James Mayer
This half-term course covers the fundamentals of kinetics and mechanisms used by
coordination compounds and transition-metal catalysts, and features analysis of papers
from the recent literature. Prerequisites: Two terms of organic chemistry, Chem 252 or
equivalent, and CHEM 402 or equivalent. sc ½ Course cr

CHEM 406a, Bioinorganic Spectroscopy Gary Brudvig
This course is an advanced introduction to biological inorganic chemistry with an
emphasis on the methods used to characterize the active sites of metalloproteins. The
major physical methods used in the determination of molecular structure, bonding and
physical properties of metal ions in proteins are introduced. Prerequisite: A general
knowledge of biochemistry and familiarity with both inorganic coordination chemistry
and physical chemistry. sc ½ Course cr

CHEM 407a, Bioinorganic Mechanisms Gary Brudvig
This course is an advanced introduction to biological inorganic chemistry. An overview
of the relevant geometric and electronic structures of metalloprotein active sites
are presented and related to each protein's function. The objective is to define and
understand the function of metals in biology in terms of structure. Prerequisite:
CHEM 406 or permission of instructor. It will be assumed that students have a general
knowledge of biochemistry and are familiar with both inorganic coordination chemistry
and physical chemistry. sc ½ Course cr

CHEM 416a, Organic Structure and Energetics William Jorgensen
The course covers concepts in physical organic chemistry including molecular structure
& bonding, conformational energetics, electronic effects, thermochemistry, ring
strain, non-covalent interactions, molecular recognition, and host-guest chemistry.
Prerequisites: Two terms of organic chemistry and two terms of physical chemistry or
related courses or permission of the instructor. sc ½ Course cr

CHEM 417a, Kinetics and Thermodynamics in Organic Systems Scott Miller
The course generally follows Organic Structure and Energetics. This module covers
concepts in physical organic chemistry including acid-base chemistry, advanced
issues in stereochemistry, kinetics and thermodynamics, as well as experiments
and techniques employed in mechanistic analysis. Issues in catalysis are addressed
throughout. Prerequisites: CHEM 416 and two terms of introductory organic
chemistry, and two terms of physical chemistry. Permission of the instructor may be sought for potential exceptions.

CHEM 419a, Proteomics and Chemical Glycobiology Stacy Malaker
Chemical biology deals with how chemistry can be applied to manipulate and study biological problems using techniques from organic chemistry, analytical chemistry, biochemistry, molecular biology, biophysical chemistry, and cell biology. This course covers topics related to the structure of proteins and oligosaccharides, protein engineering and labeling, and glycosylated proteins/nucleic acids. These play important roles throughout biochemistry and human health. Prerequisites: Two terms of both General Chemistry I and II (CHEM 161/165 and/or CHEM 163/167) as well as Organic Chemistry (CHEM 174/175 and/or CHEM 220/221).

CHEM 421a, Protein Design & Catalysis Jason Crawford
The lecture component of this course largely focuses on protein function, catalysis, and the chemistry and biology of diverse small molecule products. The course also serves to support students in writing an effective NSF style research proposal in Chemical Biology and communicating its contents to a diverse scientific audience.

PREREQUISITES: Two semesters of undergraduate organic chemistry (CHEM 174/175 and/or CHEM 220/221). A basic understanding of biochemistry and molecular biology is also assumed, but you can “catch up” by carefully and thoroughly reading the course materials and recommended books.

CHEM 424a, Chemical Biology of Drug Discovery David Spiegel
This course explores the design and enablement of medicines derived from a convergence of concepts and techniques from chemistry and biology. Topics include: small molecule drug discovery concepts and tools, drug metabolism, protein therapeutics, hybrid chemical/biologic drugs, and bi-functional molecules. Modern approaches for target discovery and validation are also discussed. The course is not organized around a textbook. Rather, material covered in lectures will be the focus of the course and supplementary reading will be recommended, mostly from modern research literature. Reading lists will be distributed at the outset of the module. Prerequisites: Undergraduate level organic chemistry I and II (CHEM 174/175 and/or CHEM 220/221), biochemistry and molecular biology.

CHEM 432a, Synthetic Methods in Organic Chemistry I Jon Ellman
Compound synthesis is essential to the discovery and development of new chemical entities with a desired property whether that be for fundamental study or for a more applied goal such as a new pharmaceutical, agrochemical, or material. In this course we emphasize key transformations and principles to provide a framework for the efficient design and synthesis of organic compounds. Prerequisites: Two terms of organic chemistry and one term of introductory inorganic chemistry, or related course, or permission of the instructor.

CHEM 433a, Synthetic Methods in Organic Chemistry II Jon Ellman
Compound synthesis is essential to the discovery and development of new chemical entities with a desired property whether that be for fundamental study or for a more applied goal such as a new pharmaceutical, agrochemical, or material. In this course we emphasize key transformations and principles to provide a framework for the efficient design and synthesis of organic compounds. This course builds on the knowledge
learned in CHEM 432. Prerequisite: CHEM 432 or permission of instructor.

SC ½ Course cr

CHEM 466a, Introduction to Quantum Mechanics 1 Tianyu Zhu

A half-term introduction to quantum mechanics, starting with the Schrödinger equation and covering model systems such as particle-in-a-box and harmonic oscillator. The fundamental postulates and theorems of quantum mechanics are also covered. Prerequisite: Physical chemistry, multivariable calculus or equivalent experience, or permission of instructor. SC ½ Course cr

CHEM 467a, Introduction to Quantum Mechanics 2 Tianyu Zhu

Continuation of an introduction to quantum mechanics, starting with angular momentum and the hydrogen atom, and then covering approximate methods such as the variation method and perturbation theory. The concepts of electron spin as well as Hartree-Fock theory and other electronic structure methods for describing molecules are covered. Half-term course. Prerequisite: CHEM 467, or multivariable calculus or equivalent experience. SC ½ Course cr

* **CHEM 472a, Introduction to Statistical Mechanics 1** Victor Batista

A half-term introduction to modern statistical mechanics, starting with fundamental concepts on quantum statistical mechanics to establish a microscopic derivation of statistical thermodynamics. Topics include ensembles, Fermi, Bose and Boltzmann statistics, density matrices, mean field theories, phase transitions, chemical reaction dynamics, time-correlation functions, Monte Carlo simulations and Molecular Dynamics simulations. Prerequisites: Physical chemistry, multivariable calculus or equivalent experience. SC ½ Course cr

* **CHEM 473a, Introduction to Statistical Mechanics 2** Victor Batista

A half-term continuation of the introduction to modern statistical mechanics, with focus on quantum statistical mechanics of liquids, Monte Carlo methods and linear response theory (Chapters 6-8 of the textbook). Classical results are obtained according to the classical limit of the quantum mechanical description. Topics include the Monte Carlo simulations and Molecular Dynamics simulations for the description of the Ising model, fluids, solvation of solutes, alchemist free energy calculations, kinetics and transport properties. Prerequisites: Physical chemistry, multivariable calculus or equivalent experience. SC ½ Course cr

* **CHEM 480a or b, Introduction to Independent Research in Chemistry** Patrick Holland

After consultation with the DUS, students engage individual experimental and/or theoretical research problems in the laboratories of a selected faculty member within the Chemistry department. At the end of the term, students submit a brief report summarizing goals, methods, and accomplishments. For each term of enrollment, students must complete the CHEM 480 registration form, available in the DUS office, and have it signed by their faculty research mentor. It must be submitted to the Chemistry DUS for final approval no later than the last week of classes in the immediately preceding academic term. Individuals wishing to perform independent research must have demonstrated proficiency in the aspects of chemistry required for the planned project, as ascertained by the supervising faculty member, and must meet basic safety requirements prior to undertaking any activities, including certified completion of the online courses entitled Laboratory Chemical Training and Hazardous
Chemical Waste Training administered by the Office of Environmental Health and Safety (EHS) at http://ehs.yale.edu/training. At least ten hours per week of research are required (including time spent on requisite safety training), with the faculty mentor affirming this level of student commitment by midterm. This course may be taken multiple times for Pass/Fail credit, subject to restrictions imposed by Yale College. RP

* CHEM 490a or b, Independent Research in Chemistry Jonathan Parr
Senior Chemistry majors engage individual experimental and/or theoretical research problems in the laboratories of a selected faculty member in the Chemistry department or in a closely related field of molecular science. CHEM 490 registration forms, found in the DUS office, must be signed by the student's faculty research mentor and submitted to the Chemistry DUS for final approval no later than the last week of classes in the immediately preceding academic term. Mandatory class meetings address issues of essential laboratory safety and ethics in science, with other class sessions focusing on core topics of broad interest to Chemistry students, including online literary research, oral presentation skills, and effective scientific writing. At least ten hours of research are required per week. Students are assigned letter grades, subject to restrictions imposed by Yale College. In special cases and with DUS approval, juniors may take this course. RP

CHEM 492b, Biochemical Rates and Mechanisms I J Patrick Loria
An advanced treatment of enzymology. Topics include transition state theory and derivation of steady-state and pre-steady-state rate equations. The role of entropy and enthalpy in accelerating chemical reactions is considered, along with modern methods for the study of enzyme chemistry. These topics are supplemented with in-depth analysis of the primary literature Prerequisites: CHEM 332 or equivalent, two semesters of organic chemistry, Math 115. SC ½ Course cr

CHEM 496b, Computational Chemistry William Jorgensen
An introduction to modern computational quantum chemistry methods. The lectures cover Hartree-Fock theory, density functional theory, geometry optimizations, thermochemistry, transition states, minimum energy paths, continuum solvation models, electron correlation methods, and modeling excited states. Special emphasis on the hands-on use of computational packages for current applications spanning organic, inorganic, and biochemical reactions. After physical chemistry or with permission of instructor. QR, SC ½ Course cr