Engineering & Applied Science (ENAS)
* ENAS 050a or b / APHY 050a or b / PHYS 050a or b, Science of Modern Technology and Public Policy Daniel Prober
Examination of the science behind selected advances in modern technology and implications for public policy, with focus on the scientific and contextual basis of each advance. Topics are developed by the participants with the instructor and with guest lecturers, and may include nanotechnology, quantum computation and cryptography, renewable energy technologies, optical systems for communication and medical diagnostics, transistors, satellite imaging and global positioning systems, large-scale immunization, and DNA made to order. Enrollment limited to first-year students. Preregistration required; see under First-Year Seminar Program. SC
HTBA
* ENAS 100b / APHY 100b / EPS 105b / EVST 100b / PHYS 100b, Energy, Environment, and Public Policy Daniel Prober
The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non–science majors with strong backgrounds in math and science. QR, SC
MW 2:30pm-3:45pm
ENAS 110b / APHY 110b, The Technological World Owen Miller
An exploration of modern technologies that play a role in everyday life, including the underlying science, current applications, and future prospects. Examples include solar cells, light-emitting diodes (LEDs), computer displays, the global positioning system, fiber-optic communication systems, and the application of technological advances to medicine. For students not committed to a major in science or engineering; no college-level science or mathematics required. Prerequisite: high school physics or chemistry. QR, SC
TTh 11:35am-12:50pm
* ENAS 118a, Introduction to Engineering, Innovation, and Design Lawrence Wilen
An introduction to engineering, innovation, and design process. Principles of material selection, stoichiometry, modeling, data acquisition, sensors, rapid prototyping, and elementary microcontroller programming. Types of engineering and the roles engineers play in a wide range of organizations. Lectures are interspersed with practical exercises. Students work in small teams on an engineering/innovation project at the end of the term. Priority to first-year students. RP
MW 9:25am-10:15am
* ENAS 120a / CENG 120a / ENVE 120a, Introduction to Environmental Engineering John Fortner
Introduction to engineering principles related to the environment, with emphasis on causes of problems and technologies for abatement. Topics include air and water pollution, global climate change, hazardous chemical and emerging environmental technologies. Prerequisites: high school calculus and chemistry or CHEM 161, 165 or CHEM 163, 167 (may be taken concurrently) or permission of instructor. QR, SC
TTh 11:35am-12:50pm
ENAS 130a or b, Introduction to Computing for Engineers and Scientists Staff
An introduction to the use of the C and C++ programming languages and the software packages Mathematica and MATLAB to solve a variety of problems encountered in mathematics, the natural sciences, and engineering. General problem-solving techniques, object-oriented programming, elementary numerical methods, data analysis, and graphical display of computational results. Prerequisite: MATH 115 or equivalent. Recommended preparation: previous programming experience. QR
HTBA
ENAS 151a or b / APHY 151a or b / PHYS 151a or b, Multivariable Calculus for Engineers Staff
An introduction to multivariable calculus focusing on applications to engineering problems. Topics include vector-valued functions, vector analysis, partial differentiation, multiple integrals, vector calculus, and the theorems of Green, Stokes, and Gauss. Prerequisite: MATH 115 or equivalent. QR
HTBA
ENAS 194a or b / APHY 194a or b, Ordinary and Partial Differential Equations with Applications Staff
Basic theory of ordinary and partial differential equations useful in applications. First- and second-order equations, separation of variables, power series solutions, Fourier series, Laplace transforms. Prerequisites: ENAS 151 or MATH 120 or equivalent, and knowledge of matrix-based operations. QR
HTBA
ENAS 345b / CENG 345b, Principles and Applications of Interfacial Phenomena Kyle Vanderlick
This course covers the nature and consequences of both flexible and rigid interfaces, such as those associated with liquids and solids respectively. We examine the properties of interfaces as they exist alone, as a collective (e.g., colloids), and also as they interact demonstrably with one another. Examples of the latter include thin films, confined fluids and biological membranes. An integral part of this course is the introduction and application of engineering analysis (e.g., finite element analysis) to calculate and predict behaviors central to technological applications. SC
TTh 2:30pm-3:45pm
ENAS 360b / ENVE 360b, Green Engineering and Sustainable Design Julie Zimmerman
Study of green engineering, focusing on key approaches to advancing sustainability through engineering design. Topics include current design, manufacturing, and disposal processes; toxicity and benign alternatives; policy implications; pollution prevention and source reduction; separations and disassembly; material and energy efficiencies and flows; systems analysis; biomimicry; and life cycle design, management, and analysis. Prerequisites: CHEM 161, 165 or 163, 167 (or CHEM 112, 113, or 114, 115), or permission of instructor.
MW 1pm-2:15pm
* ENAS 403a, Funding It: Innovation, Entrepreneurship, and Venture Capital Jorge Torres
A survey of the origins, practice, and business models of venture capital with application to engineering science. Consideration of three major areas: the history and purpose of venture capital; the practical details of venture investing; and advanced topics on business models, technology ecosystems, and ethics. Particular exposure to principles of entrepreneurship, including intellectual property strategy, market validation, customer discovery, positioning, and capital formation. Separate application required at: https://bit.ly/ENAS403
Th 1:30pm-3:20pm
* ENAS 415a / BENG 415a, Practical Applications of Bioimaging and Biosensing Daniel Coman, Ansel Hillmer, and Evelyn Lake
Detecting, measuring, and quantifying the structural and functional properties of tissue is of critical importance in both biomedical research and medicine. This course focuses on the practicalities of generating quantitative results from raw bioimaging and biosensing data to complement other courses focus on the theoretical foundations which enable the collection of these data. Participants in the course work with real, cutting-edge data collected here at Yale. They become familiar with an array of current software tools, denoising and processing techniques, and quantitative analysis methods that are used in the pursuit of extracting meaningful information from imaging data. The subject matter of this course ranges from bioenergetics, metabolic pathways, molecular processes, brain receptor kinetics, protein expression and interactions to wide spread functional networks, long-range connectivity, and organ-level brain organization. The course provides a unique hands-on experience with processing and analyzing in vitro and in vivo bioimaging and biosensing data that is relevant to current research topics. The specific imaging modes which are covered include in vivo magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI), functional, structural, and molecular imaging (MRI), wide-field fluorescent optical imaging, and positron emission tomography (PET). The course provides the necessary background in biochemistry, bioenergetics, and biophysics for students to motivate the image manipulations which they learn to perform. Prerequisites: Math through first order differential equations, PHYS 180/181, CHEM 161, BIOL 101/102, BENG 249 or other experience with scientific software like MATLAB®, BENG 350 and BENG 410 (both of which can be taken at the same time as this course) SC 0 Course cr
F 1pm-2:15pm
ENAS 441a / MENG 441a, Applied Numerical Methods for Differential Equations Beth Anne Bennett
The derivation, analysis, and implementation of numerical methods for the solution of ordinary and partial differential equations, both linear and nonlinear. Additional topics such as computational cost, error estimation, and stability analysis are studied in several contexts throughout the course. Prerequisites: MATH 115, and 222 or 225, or equivalents; ENAS 130 or some knowledge of Matlab, C++, or Fortran programming; ENAS 194 or equivalent. ENAS 440 is not a prerequisite. QR
MW 9am-10:15am
ENAS 475a / MENG 475a, Fluid Mechanics of Natural Phenomena Amir Pahlavan
This course draws inspiration from nature and focuses on utilizing the fundamental concepts of fluid mechanics and soft matter physics to explain these phenomena. We study a broad range of problems related to i) nutrient transport in plants, slime molds, and fungi and the adaptation of their networks in dynamic environments, ii) collective behavior and chemotaxis of swimming microorganisms, and iii) pattern formation in nature, e.g. icicles, mud cracks, salt polygons, dendritic crystals, and Turing patterns. We also discuss how our understanding of these problems could be used to develop sustainable solutions for the society, e.g. designing synthetic trees to convert CO2 to oxygen, developing micro/nano robots for biomedical applications, and utilizing pattern formation and self-assembly to make new materials. Prerequisite: MENG 361.
MW 11:35am-12:50pm