ENVIRONMENTAL ENGINEERING (ENVE)

ENVE 120a / CENG 120a / ENAS 120a, Introduction to Environmental Engineering
John Fortner
Introduction to engineering principles related to the environment, with emphasis on causes of problems and technologies for abatement. Topics include air and water pollution, global climate change, hazardous chemical and emerging environmental technologies. Prerequisites: high school calculus and chemistry or CHEM 161, 165 or CHEM 163, 167 (may be taken concurrently) or permission of instructor. QR, SC

ENVE 210a / CENG 210a, Principles of Chemical Engineering and Process Modeling
Peijun Guo
Analysis of the transport and reactions of chemical species as applied to problems in chemical, biochemical, and environmental systems. Emphasis on the interpretation of laboratory experiments, mathematical modeling, and dimensional analysis. Lectures include classroom demonstrations. Prerequisite: MATH 120 or permission of instructor. QR, SC RP

ENVE 215b, Environmental Engineering Practice
Jaehong Kim
Focus on the technical tools of environmental engineering and science, with emphasis on data acquisition and integration, experimental project design and problem solving, and science and engineering communication. Students emerge competent in the skills needed for environmental exploration and communication and armed with the tools of discovery. Prerequisite: ENVE 120.

ENVE 314a / CENG 314a, Transport Phenomena I
Kyle Vanderlick
First of a two-semester sequence. Unified treatment of momentum, energy, and chemical species transport including conservation laws, flux relations, and boundary conditions. Topics include convective and diffusive transport, transport with homogeneous and heterogeneous chemical reactions and/or phase change, and interfacial transport phenomena. Emphasis on problem analysis and mathematical modeling, including problem formulation, scaling arguments, analytical methods, approximation techniques, and numerical solutions. Prerequisite: ENAS 194 or permission of the instructor. QR, SC RP

ENVE 315b / CENG 315b, Transport Phenomena II
Amir Haji-Akbari
Unified treatment of momentum, energy, and chemical species transport including conservation laws, flux relations, and boundary conditions. Topics include convective and diffusive transport, transport with homogeneous and heterogeneous chemical reactions and/or phase change, and interfacial transport phenomena. Emphasis on problem analysis and mathematical modeling, including problem formulation, scaling arguments, analytical methods, approximation techniques, and numerical solutions. Prerequisite: ENAS 194 or permission of instructor. QR, SC

ENVE 320a / ENRG 320a / MENG 320a, Energy, Engines, and Climate
Alessandro Gomez
The course aims to cover the fundamentals of a field that is central to the future of the world. The field is rapidly evolving and, although an effort will be made to keep abreast
of the latest developments, the course emphasis is on timeless fundamentals, especially from a physics perspective. Topics under consideration include: key concepts of climate change as a result of global warming, which is the primary motivator of a shift in energy supply and technologies to wean humanity off fossil fuels; carbon-free energy sources, with primary focus on solar, wind and associated needs for energy storage and grid upgrade; and, traditional power plants and engines using fossil fuels, that are currently involved in 85% of energy conversion worldwide and will remain dominant for at least a few decades. Elements of thermodynamics are covered throughout the course as needed, including the definition of various forms of energy, work and heat as energy transfer, the principle of conservation of energy, first law and second law, and rudiments of heat engines. We conclude with some considerations on energy policy and with the "big picture" on how to tackle future energy needs. The course is designed for juniors and seniors in science and engineering. Prerequisite: MENG 211 or permission from the instructor.

ENVE 360b / ENAS 360b, Green Engineering and Sustainable Design
Julie Zimmerman
Study of green engineering, focusing on key approaches to advancing sustainability through engineering design. Topics include current design, manufacturing, and disposal processes; toxicity and benign alternatives; policy implications; pollution prevention and source reduction; separations and disassembly; material and energy efficiencies and flows; systems analysis; biomimicry; and life cycle design, management, and analysis. Prerequisites: CHEM 161, 165 or 163, 167 (or CHEM 112, 113, or 114, 115), or permission of instructor.

ENVE 373a / CENG 373a, Air Pollution Control
Drew Gentner
An overview of air quality problems worldwide with a focus on emissions, chemistry, transport, and other processes that govern dynamic behavior in the atmosphere. Quantitative assessment of the determining factors of air pollution (e.g., transportation and other combustion–related sources, chemical transformations), climate change, photochemical “smog,” pollutant measurement techniques, and air quality management strategies. Prerequisite: ENVE 120.

* **ENVE 377b / CENG 377b, Water-Energy Nexus**
Lea Winter
This course explores processes and technologies at the water-energy nexus. We utilize chemical and environmental engineering fundamentals to explore the links between maintaining clean water supply and energy security globally, as well as implications for environmental contamination and climate change. We develop a quantitative understanding of water chemistry and energy considerations for topics including traditional water and wastewater treatment, energy recovery from wastewater, membrane processes, water electrolysis for energy storage and electrochemical contaminant conversion, industrial water consumption and wastewater production, underground water sources and water for oil and gas, opportunities for reuse of nontraditional source waters and contaminant valorization, and considerations for decentralization, resilience, and electrification. Quantitative understanding of these processes will be attained based on mass and energy balances, systems engineering, thermodynamics, and kinetics. Prerequisite: ENVE 120 or permission of instructor.

The course is primarily designed for juniors and seniors majoring in environmental engineering, but students in other engineering majors are welcome. Students in non-engineering majors are also welcome but are encouraged to communicate with
the instructor to make sure they have sufficient background knowledge in required mathematics. QR, SC

ENVE 416b / CENG 416b, Chemical Engineering Process Design Yehia Khalil
Study of the techniques for and the design of chemical processes and plants, applying the principles of chemical engineering and economics. Emphasis on flowsheet development and equipment selection, cost estimation and economic analysis, design strategy and optimization, safety and hazards analysis, and environmental and ethical considerations. Enrollment limited to seniors majoring in Chemical Engineering or Environmental Engineering. QR, SC RP

ENVE 438b, Environmental Organic Chemistry John Fortner
This course examines major physical and chemical attributes and processes affecting the behavior of organic compounds in environmental systems, including volatilization, sorption/attachment, diffusion, and reactivity. Emphasis is placed on legacy pollutants (e.g. TCE, PCBs, DDT) and along with emerging contaminants of concern (e.g. pharmaceuticals, explosives, etc). The course reviews basic concepts from physical chemistry and examines the relationships between chemical structure, properties, and environmental behavior of organic compounds. Physical and chemical processes important to the fate, treatment, and transformation of specific organic compounds are addressed including solubility, volatilization, partitioning, sorption/attachment, bioaccumulation, and bulk environmental transformation pathways. Equilibrium and kinetic models based on these principles are used to predict the fate and transport of organic contaminants in the environment. Priority given to seniors or permission of instructor. QR, SC

ENVE 448a, Environmental Transport Processes Menachem Elimelech
Analysis of transport phenomena governing the fate of chemical and biological contaminants in environmental systems. Emphasis on quantifying contaminant transport rates and distributions in natural and engineered environments. Topics include distribution of chemicals between phases; diffusive and convective transport; interfacial mass transfer; contaminant transport in groundwater, lakes, and rivers; analysis of transport phenomena involving particulate and microbial contaminants. Prerequisite: ENVE 120 or permission of instructor. QR, SC

* **ENVE 490a or b, Senior Project** John Fortner
Individual research and design projects supervised by a faculty member in Environmental Engineering, or in a related field with permission of the director of undergraduate studies.