Applied Physics

Becton Center, 203.432.2210
http://appliedphysics.yale.edu
M.S., M.Phil., Ph.D.

Chair
Charles Ahn

Director of Graduate Studies
Vidvuds Ozolins (305 BCT and ESI, West Campus, vidvuds.ozolins@yale.edu)

Professors Charles Ahn, Sean Barrett (Physics), Hui Cao, Richard Chang (Emeritus), Michel Devoret, Paul Fleury (Emeritus), Steven Girvin (Physics), Leonid Glazman (Physics), Jack Harris (Physics), Victor Henrich (Emeritus), Sohrab Ismail-Beigi, Marshall Long (Mechanical Engineering & Materials Science), Tso-Ping Ma (Electrical Engineering), Simon Mochrie, Corey O’Hern (Mechanical Engineering & Materials Science), Vidvuds Ozolins, Daniel Prober, Nicholas Read, Mark Reed (Electrical Engineering), Peter Schiffer, Robert Schoelkopf, Ramamurti Shankar (Physics), Mitchell Smooke (Mechanical Engineering & Materials Science), A. Douglas Stone, Hong Tang (Electrical Engineering), Robert Wheeler (Emeritus), Werner Wolf (Emeritus)

Associate Professors Michael Choma (Biomedical Engineering), Liang Jiang, Peter Rakich

Assistant Professor Owen Miller

Fields of Study

Fields include areas of theoretical and experimental condensed-matter and materials physics, optical and laser physics, quantum engineering, and nanoscale science. Specific programs include surface and interface science, first principles electronic structure methods, photonic materials and devices, complex oxides, magnetic and superconducting artificially engineered systems, quantum computing and superconducting device research, quantum transport and nanotube physics, quantum optics, and random lasers.

Special Admissions Requirements

The prerequisites for work toward a Ph.D. degree in Applied Physics include a sound undergraduate training in physics and a good mathematical background. The GRE General Test is required, and the Subject Test in Physics is strongly recommended.

Integrated Graduate Program in Physical and Engineering Biology (PEB)

Students applying to the Ph.D. program in Applied Physics may also apply to be part of the PEB program. See the description under Non-Degree-Granting Programs, Councils, and Research Institutes for course requirements, and http://peb.yale.edu for more information about the benefits of this program and application instructions.

Special Requirements for the Ph.D. Degree

The student plans a course of study in consultation with faculty advisers (the student’s advisory committee). There are a minimum of five core courses, two electives, and two Special Investigations (APHY 990), for a total of nine graded term courses. Core courses will be chosen from four groups: two from the QM group, and one from each of the other groups. Quantum Mechanics I (PHYS 508), Quantum Mechanics II (PHYS 608), and Electromagnetic Theory I (PHYS 502) will be default courses from their groups, with place-up option to others in the QM and E&M groups based on passing the Physics department exam. There will be no placing out of the required seven courses, except for incoming students with master’s or equivalent degrees, who are allowed to place out of three core courses.

The core groups are as follows:

Group 1 (QM, two courses required): Quantum Mechanics I (PHYS 508)*; Quantum Mechanics II (PHYS 608)*; Quantum Information and Computation (APHY 601); Quantum Optics (APHY 691).

Group 2 (E&M, one course required): Electromagnetic Theory I (PHYS 502)*; Principles of Optics with Applications (APHY 675); Techniques of Microwave Measurements and RF Design (APHY 816).

Group 3 (CM Physics, one course required): Solid State Physics I (APHY 548); Solid State Physics II (APHY 549); Statistical Physics I (PHYS 512); Introduction to Light-Matter Interactions (APHY 676).

Group 4 (one course required): Mathematical Methods of Physics (PHYS 506); Solid State Physics II (APHY 549); Principles of Optics with Applications (APHY 675); Noise, Dissipation, Amplification, and Information (APHY 677).

Any of the courses from these groups not taken to meet core requirements may be taken as electives. Students who place up from a required course and prefer not to take any of the other courses in that group to satisfy the core requirement may petition the director of graduate studies (DGS) to substitute a different elective. Electives may be widely chosen, but will typically come from the following: Mesoscopic Physics I (APHY 634); Introduction to Superconductivity (APHY 633); Quantum Many-Body Theory (APHY 610); Nonlinear Optics and Lasers (APHY 679); Biological Physics (PHYS 523). Students may also petition the DGS to substitute an elective not on the standard list. The required seven courses are just the minimum, and students are strongly encouraged to take additional courses that are centrally related to their Ph.D. research. The DGS will work with students and their advisers to ensure that students are prepared for success in their field of research.

Students must take Responsible Conduct in Research for Physical Scientists (APHY 590), which discusses ethics and responsible conduct in scientific research and fulfills the requirement stipulated by the National Science Foundation for all students and for all postdoctoral researchers funded by the NSF. Note that APHY 590 may not be used to fulfill the nine-course requirement.

Each term, the faculty review the overall performance of the student and report their findings to the DGS, who determines whether the student may continue toward the Ph.D. degree. By the end of the second term, it is expected that a faculty member has agreed to accept the student as a research assistant. By December 5 of the third year, an area examination must be passed and a written prospectus submitted before dissertation research is begun. These events result in the student’s admission to candidacy. Subsequently, the student will report orally each year to the full advisory committee on progress. When the research is nearing completion, but before the thesis writing has commenced, the full advisory committee will advise the student on the thesis plan. A final oral presentation of the dissertation research is required to be given during term time.

There is no foreign language requirement.

Teaching experience is regarded as an integral part of the graduate training program at Yale University, and all Applied Physics graduate students are required to serve as a Teaching Fellow for one term, typically during year two. Teaching duties normally involve assisting in laboratories or discussion sections and grading papers and are not expected to require more than ten hours per week. Students are not permitted to teach during the first year of study. Students whose advisers experience disruption in funding may require additional support from the Graduate School. In such cases, students will be required to teach for up to an additional two terms, if needed, but will not be required to teach more than three terms over their first five years.

If a student was admitted to the program having earned a score of less than 26 on the Speaking Section of the Internet-based TOEFL, the student will be required to take an English as a Second Language (ESL) course each term at Yale until the Graduate School’s Oral English Proficiency standard has been met. This must be achieved by the end of the third year in order for the student to remain in good standing.

Honors Requirement

Students must meet the Graduate School’s Honors requirement in at least two term courses (excluding Special Investigations) by the end of the third term of full-time study. An extension of one term may be granted on a case-by-case basis at the discretion of the DGS, in consultation with the student’s committee.

Master’s Degrees

M.Phil. See Degree Requirements under Policies and Regulations.

M.S. (en route to the Ph.D.) To qualify for the M.S., the student must pass eight term courses; no more than two may be Special Investigations. An average grade of at least High Pass is required, with at least one grade of Honors.

Terminal Master’s Degree Program Students may also be admitted directly to a terminal master’s degree program. The requirements are the same as for the M.S. en route to the Ph.D., although there are no core course requirements for students in this program. This program is normally completed in one year, but a part-time program may be spread over as many as four years. Some courses are available in the evening, to suit the needs of students from local industry.


Program materials are available upon request to the Director of Graduate Studies, Department of Applied Physics, Yale University, PO Box 208267, New Haven CT 06520-8267; e-mail, applied.physics@yale.edu; website, http://appliedphysics.yale.edu.

Courses

APHY 548a, Solid State Physics ISohrab Ismail-Beigi

A two-term sequence (with APHY 549) covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structures, phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonance, phase transitions, and superconductivity.
TTh 1pm-2:15pm

APHY 549b, Solid State Physics IIMichel Devoret

A two-term sequence (with APHY 548) covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structures, phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonance, phase transitions, and superconductivity.
MW 1pm-2:15pm

APHY 590b / PHYS 590b, Responsible Conduct in Research for Physical ScientistsStaff

Required seminar for all first-year students.
HTBA

APHY 607b, Modern Topics in Optics and Quantum ElectronicsPeter Rakich

This course provides a survey of modern topics involving integrated photonics, optomechanics, nonlinear optics, and laser physics for students interested in contemporary experimental optics research. Subjects include nonlinear wave phenomena, optomechanical interactions, phonon physics, light scattering, light emission and detection, cavities, systems of cavities, traveling-wave devices and interactions, perturbation theory, reciprocal and nonreciprocal systems, parametric interactions, laser oscillators and related technologies. Students are encouraged to explore these and related research topics through independent study and classroom presentations.
TTh 4pm-5:15pm

APHY 610b / PHYS 610b, Quantum Many-Body TheoryLeonid Glazman

Identical particles and second quantization. Electron tunneling and spectral function. General linear response theory. Approximate methods of quantum many-body theory. Dielectric response, screening of long-range interactions, electric conductance, collective modes, and photon absorption spectra. Fermi liquid; Cooper and Stoner instabilities; notions of superconductivity and magnetism. BCS theory, Josephson effect, and Majorana fermions in condensed matter; superconducting qubits. Bose-Einstein condensation; Bogoliubov quasiparticles and solitons.
TTh 11:35am-12:50pm

APHY 628a / PHYS 628a, Statistical Physics IIBenjamin Machta

An advanced course in statistical mechanics. Topics may include mean field theory of and fluctuations at continuous phase transitions; critical phenomena, scaling, and introduction to the renormalization group ideas; topological phase transitions; dynamic correlation functions and linear response theory; quantum phase transitions; superfluid and superconducting phase transitions; cooperative phenomena in low-dimensional systems.
TTh 2:30pm-3:45pm

APHY 634a / PHYS 634a, Mesoscopic Physics IMichel Devoret

Introduction to the physics of nanoscale solid state systems, which are large and disordered enough to be described in terms of simple macroscopic parameters like resistance, capacitance, and inductance, but small and cold enough that effects usually associated with microscopic particles, like quantum-mechanical coherence and/or charge quantization, dominate. Emphasis is placed on transport and noise phenomena in the normal and superconducting regimes.
MW 9am-10:15am

APHY 675a / PHYS 675a, Principles of Optics with ApplicationsHui Cao

Introduction to the principles of optics and electromagnetic wave phenomena with applications to microscopy, optical fibers, laser spectroscopy, nanophotonics, plasmonics, and metamaterials. Topics include propagation of light, reflection and refraction, guiding light, polarization, interference, diffraction, scattering, Fourier optics, and optical coherence.
TTh 11:35am-12:50pm

APHY 676a / PHYS 676a, Introduction to Light-Matter InteractionsPeter Rakich

Optical properties of materials and a variety of coherent light-matter interactions are explored through the classical and quantum treatments. The role of electronic, phononic, and plasmonic interactions in shaping the optical properties of materials is examined using generalized quantum and classical coupled-mode theories. The dynamic response of media to strain, magnetic, and electric fields is also treated. Modern topics are explored, including optical forces, photonic crystals, and metamaterials; multi-photon absorption; and parametric processes resulting from electronic, optomechanical, and Raman interactions.
TTh 4pm-5:15pm

APHY 725b / ENAS 725b, Advanced Synchrotron Techniques and Electron Spectroscopy of MaterialsCharles Ahn

This course provides descriptions of advanced concepts in synchrotron X-ray and electron-based methodologies for studies of a wide range of materials at atomic and nano-scales. Topics include X-ray and electron interactions with matter, X-ray scattering and diffraction, X-ray spectroscopy and inelastic methods, time-resolved applications, X-ray imaging and microscopy, photo-electron spectroscopy, electron microscopy and spectroscopy, among others. Emphasis is on applying the fundamental knowledge of these advanced methodologies to real-world materials studies in a variety of scientific disciplines.
Th 1:30pm-3:20pm

APHY 990a or b, Special InvestigationsStaff

Faculty-supervised individual projects with emphasis on research, laboratory, or theory. Students must define the scope of the proposed project with the faculty member who has agreed to act as supervisor, and submit a brief abstract to the director of graduate studies for approval.
HTBA