52 Hillhouse Avenue, 203.432.3000
M.S., M.Phil., Ph.D.

Sarbani Basu

Director of Graduate Studies
Robert Zinn [F] (203.432.3017,
Jeffrey Kenney [Sp] (203.432.3013,

Professors Charles Bailyn, Charles Baltay (Physics), Sarbani Basu, Paolo Coppi, Pierre Demarque (Emeritus), Debra Fischer, Marla Geha, Jeffrey Kenney, Richard Larson (Emeritus), Gregory Laughlin, Priyamvada Natarajan, C. Megan Urry (Physics), William van Altena (Emeritus), Pieter van Dokkum, Robert Zinn

Associate Professors Héctor Arce, Reina Maruyama (Physics), Daisuke Nagai (Physics), Nikhil Padmanabhan (Physics), Frank van den Bosch

Assistant Professor Jessi Cisewski (Statistics & Data Science)

Fields of Study

Fields include observational and theoretical astronomy, solar and stellar astrophysics, exoplanets, astrometry, galactic astronomy, extragalactic astronomy, radio astronomy, high-energy astrophysics, and cosmology.

Special Admissions Requirements

Applicants are expected to have a strong undergraduate preparation in physics and mathematics. Although some formal training in astronomy is useful, it is by no means a prerequisite for admission. Applicants are required to take the General GRE as well as the subject test in Physics.

Special Requirements for the Ph.D. Degree

A typical program of study includes twelve courses taken during the first four terms, and must include the core courses listed below:

The Physics of Astrophysics (ASTR 500), Computational Methods in Astrophysics and Geophysics (ASTR 520), Observational Astronomy (ASTR 555), Interstellar Matter and Star Formation (ASTR 560), either Stellar Populations (ASTR 510) or Stellar Astrophysics (ASTR 550), and either Galaxies (ASTR 530) or The Evolving Universe (ASTR 565). ASTR 620 or PHYS 678 may be substituted for ASTR 520 with the permission of the director of graduate studies (DGS).

Students require the permission of the instructor and the DGS to skip a core class if they think that they have sufficient knowledge of the field. Students will be required to demonstrate their knowledge of the field before they are allowed to skip any core class.

Two of the twelve courses must be research credits, each earned by working in close collaboration with a faculty member. Of the two research credits, one must be earned doing a theoretical project and one doing an experimental research project. The students need to present the results of the project as a written report and will be given an evaluation of their performance.

The choice of the four remaining courses depends on the candidate’s interest and background and must be decided in consultation with the DGS and/or the prospective thesis adviser. Advisers may require students to take particular classes and obtain a specified minimum grade in order for a student to work with them for their thesis. Students must take any additional course that their supervisors require even after their fourth term. In addition, all students, regardless of their term of study, have to attend Professional Seminar (ASTR 710) every term. Students must also take Responsible Conduct in Research for Physical Scientists (PHYS 590), which discusses ethics and responsible conduct in scientific research and fulfills the requirement stipulated by the National Science Foundation for all students and for all postdoctoral researchers funded by the NSF. Note that ASTR 710 and PHYS 590 may not be used to fulfill the twelve-course requirement.

Students are encouraged to take graduate courses in physics or related subjects. On an irregular basis, special topic courses and seminars are offered, which provide the opportunity to study some fields in greater depth than is possible in standard courses. To achieve both breadth and depth in their education, students are encouraged to take a few courses beyond their second year of study.

There is no foreign language requirement. A written comprehensive examination, normally taken at the end of the fourth term of graduate work, tests the student’s familiarity with the entire field of astronomy and related branches of physics and mathematics. Particular attention will be paid to the student’s performance in the field in which the student plans to do research. An oral examination, held a few weeks after the written examination, is based on the student’s chosen field of research. Satisfactory performance in these examinations, an acceptable record in course and research work, and an approved dissertation prospectus are required for admission to candidacy for the Ph.D. degree. The dissertation should present the results of an original and thorough investigation, worthy of publication. Most importantly, it should reflect the candidate’s capacity for independent research. An oral dissertation defense is required.

Teaching experience is an integral part of graduate education in astronomy. All students are required to serve as teaching fellows for four terms. Both the level of teaching assignments and the scheduling of teaching are variable and largely determined by the needs of the department. Most students will teach in each of their first three terms and complete their fourth teaching assignment sometime after the qualifying exam.

Honors Requirement

Students must earn a grade of Honors in at least three classes by the end of the fourth term of full-time study and have a grade average of High Pass.

Master’s Degrees

M.Phil. Upon application, the department will recommend for the award of the M.Phil. degree any student who has completed all the requirements of the Ph.D. degree except the oral examination, which is based on the student’s chosen field of research, and the Ph.D. dissertation. A written master’s thesis containing original astronomical research is also required. Students are not admitted for this degree.

M.S. (en route to the Ph.D.) Upon application, the department will recommend for the award of the M.S. degree any student who has taken at least ten courses (not including ASTR 710), including at least one research project (ASTR 580). The student should have a grade average of High Pass in the courses and a grade of High Pass or above in the research project.

Program materials are available upon request to the Director of Graduate Studies, Department of Astronomy, Yale University, PO Box 208101, New Haven CT 06520-8101.


ASTR 500a, The Physics of AstrophysicsSarbani Basu

Primarily for incoming students in the Ph.D. program in Astronomy. The basic physics and related mathematics needed to take the advanced graduate courses. Topics in mechanics, thermodynamics and statistical mechanics, fluid mechanics, special relativity, and electrodynamics with applications to astrophysical systems are covered. Open to undergraduates with permission of the instructor.
TTh 9am-10:15am

ASTR 510a, Stellar PopulationsRobert Zinn

The stellar population of our galaxy and the galaxies of the local group. The properties of stars and star clusters, stellar evolution, and the structure and evolution of our galaxy.
MW 4pm-5:15pm

ASTR 518b, Stellar DynamicsMarla Geha

The dynamics and evolution of star clusters; structure and dynamics of our galaxy; theories of spiral structure; dynamical evolution of galaxies.
MW 2:30pm-3:45pm

ASTR 520a / G&G 538a, Computational Methods in Astrophysics and GeophysicsPaolo Coppi

The analytic and numerical/computational tools necessary for effective research in astronomy, geophysics, and related disciplines. Topics include numerical solutions to differential equations, spectral methods, and Monte Carlo simulations. Applications are made to common astrophysical and geophysical problems including fluids and N-body simulations.
MW 2:30pm-3:45pm

ASTR 525b, Advanced Statistical Methods for AstronomyPaolo Coppi

Statistical techniques for extracting the maximum signal from data. Non-Gaussian probability distributions, optimal noise reduction techniques, period-finding, and parameter estimation using Bayesian and Monte Carlo Markov chain methods. Prerequisite: experience with programming. Open to undergraduates with permission of the instructor.
TTh 4pm-5:15pm

ASTR 530b, GalaxiesJeffrey Kenney

The structure and morphology of galaxies, stellar populations, interstellar media, star formation, central black holes, galaxy mergers, and galaxy properties as a function of environment.
MW 4pm-5:15pm

ASTR 555b, Observational AstronomyPieter Van Dokkum

The design and use of optical telescopes, cameras, spectrographs, and detectors to make astronomical observations. The reduction and analysis of photometric and spectroscopic observations.
TTh 9am-10:15am

ASTR 570a / PHYS 570a, High-Energy AstrophysicsPriyamvada Natarajan

A survey of current topics in high-energy astrophysics, including accreting black hole and neutron star systems in our galaxy, pulsars, active galactic nuclei and relativistic jets, gamma-ray bursts, and ultra-high-energy cosmic rays. The basic physical processes underlying the observed high-energy phenomena are also covered.
TTh 4pm-5:15pm

ASTR 575a, ExoplanetsGregory Laughlin

In recent years hundreds of exoplanets have been discovered orbiting around other stars. This course reviews the physics of planetary orbits, current exoplanet detection techniques, recent progress in characterizing exoplanet interiors and atmospheres, and the implications of these findings for our understanding of planet formation and evolution.
MW 9am-10:15am

ASTR 580a or b, ResearchStaff

By arrangement with faculty.

ASTR 710a and ASTR 711b, Professional SeminarDebra Fischer

A weekly seminar covering science and professional issues in astronomy.
F 1:45pm-3:15pm